
ÿØÿà

This document is created with the unregistered version of CHM2PDF Pilot

Cisco Cookbook
By Ian J. Brown, Kevin Dooley

Publisher: O'Reilly
Pub Date: July 2003

ISBN: 0-596-00367-6

 Copyright
 Preface
 Organization
 What's in This Book
 Conventions
 Comments and Questions
 Acknowledgments
 Chapter 1. Router Configuration and File Management
 Introduction
 Recipe 1.1. Configuring the Router via TFTP
 Recipe 1.2. Saving Router Configuration to Server
 Recipe 1.3. Booting the Router Using a Remote Configuration File
 Recipe 1.4. Storing Configuration Files Larger than NVRAM
 Recipe 1.5. Clearing the Startup Configuration
 Recipe 1.6. Loading a New IOS Image
 Recipe 1.7. Booting a Different IOS Image
 Recipe 1.8. Booting Over the Network
 Recipe 1.9. Copying an IOS Image to a Server
 Recipe 1.10. Copying an IOS Image Through the Console
 Recipe 1.11. Deleting Files from Flash
 Recipe 1.12. Partitioning Flash
 Recipe 1.13. Using the Router as a TFTP Server
 Recipe 1.14. Using FTP from the Router
 Recipe 1.15. Generating Large Numbers of Router Configurations
 Recipe 1.16. Changing the Configurations of Many Routers at Once
 Recipe 1.17. Extracting Hardware Inventory Information
 Recipe 1.18. Backing Up Router Configurations
 Chapter 2. Router Management
 Introduction
 Recipe 2.1. Creating Command Aliases
 Recipe 2.2. Managing the Router's ARP Cache
 Recipe 2.3. Tuning Router Buffers
 Recipe 2.4. Using the Cisco Discovery Protocol
 Recipe 2.5. Disabling the Cisco Discovery Protocol
 Recipe 2.6. Using the Small Servers
 Recipe 2.7. Enabling HTTP Access to a Router
 Recipe 2.8. Using Static Hostname Tables
 Recipe 2.9. Enabling Domain Name Services
 Recipe 2.10. Disabling Domain Name Lookups
 Recipe 2.11. Specifying a Router Reload Time
 Recipe 2.12. Creating Exception Dump Files
 Recipe 2.13. Generating a Report of Interface Information
 Recipe 2.14. Generating a Report of Routing Table Information
 Recipe 2.15. Generating a Report of ARP Table Information
 Recipe 2.16. Generating a Server Host Table File
 Chapter 3. User Access and Privilege Levels
 Introduction
 Recipe 3.1. Setting Up User IDs
 Recipe 3.2. Encrypting Passwords
 Recipe 3.3. Using Better Encryption Techniques
 Recipe 3.4. Removing Passwords from a Router Configuration File
 Recipe 3.5. Deciphering Cisco's Weak Password Encryption
 Recipe 3.6. Displaying Active Users
 Recipe 3.7. Sending Messages to Other Users
 Recipe 3.8. Changing the Number of VTYs
 Recipe 3.9. Changing VTY Timeouts
 Recipe 3.10. Restricting VTY Access by Protocol
 Recipe 3.11. Enabling Absolute Timeouts on VTY Lines
 Recipe 3.12. Implementing Banners
 Recipe 3.13. Disabling Banners on a Port
 Recipe 3.14. Disabling Router Lines
 Recipe 3.15. Reserving a VTY Port for Administrative Access
 Recipe 3.16. Restricting Inbound Telnet Access
 Recipe 3.17. Logging Telnet Access
 Recipe 3.18. Setting the Source Address for Telnet
 Recipe 3.19. Automating the Login Sequence
 Recipe 3.20. Using SSH for Secure Access
 Recipe 3.21. Changing the Privilege Level of IOS Commands
 Recipe 3.22. Defining Per-User Privileges
 Recipe 3.23. Defining Per-Port Privileges
 Chapter 4. TACACS+
 Introduction
 Recipe 4.1. Authenticating Login IDs from a Central System
 Recipe 4.2. Restricting Command Access
 Recipe 4.3. Losing Access to the TACACS+ Server
 Recipe 4.4. Disabling TACACS+ Authentication on a Particular Line
 Recipe 4.5. Capturing User Keystrokes
 Recipe 4.6. Logging System Events
 Recipe 4.7. Setting the IP Source Address for TACACS+ Messages
 Recipe 4.8. Obtaining Free TACACS+ Server Software
 Recipe 4.9. Sample Server Configuration Files
 Chapter 5. IP Routing
 Introduction
 Recipe 5.1. Finding an IP Route
 Recipe 5.2. Finding Types of IP Routes
 Recipe 5.3. Converting Different Mask Formats
 Recipe 5.4. Using Static Routing
 Recipe 5.5. Floating Static Routes
 Recipe 5.6. Using Policy-Based Routing to Route Based on Source Address
 Recipe 5.7. Using Policy-Based Routing to Route Based on Application Type
 Recipe 5.8. Examining Policy-Based Routing
 Recipe 5.9. Changing Administrative Distances
 Recipe 5.10. Routing Over Multiple Paths with Equal Costs
 Chapter 6. RIP
 Introduction
 Recipe 6.1. Configuring RIP Version 1
 Recipe 6.2. Filtering Routes with RIP
 Recipe 6.3. Redistributing Static Routes into RIP
 Recipe 6.4. Redistributing Routes Using Route Maps
 Recipe 6.5. Creating a Default Route in RIP
 Recipe 6.6. Disabling RIP on an Interface
 Recipe 6.7. Unicast Updates for RIP
 Recipe 6.8. Applying Offsets to Routes
 Recipe 6.9. Adjusting Timers
 Recipe 6.10. Configuring Interpacket Delay
 Recipe 6.11. Enabling Triggered Updates
 Recipe 6.12. Increasing the RIP Input Queue
 Recipe 6.13. Configuring RIP Version 2
 Recipe 6.14. Enabling RIP Authentication
 Recipe 6.15. RIP Route Summarization
 Recipe 6.16. Route Tagging
 Chapter 7. EIGRP
 Introduction
 Recipe 7.1. Configuring EIGRP
 Recipe 7.2. Filtering Routes with EIGRP
 Recipe 7.3. Redistributing Routes into EIGRP
 Recipe 7.4. Redistributing Routes into EIGRP Using Route Maps
 Recipe 7.5. Creating a Default Route in EIGRP
 Recipe 7.6. Disabling EIGRP on an Interface
 Recipe 7.7. EIGRP Route Summarization
 Recipe 7.8. Adjusting EIGRP Metrics
 Recipe 7.9. Adjusting Timers
 Recipe 7.10. Enabling EIGRP Authentication
 Recipe 7.11. Logging EIGRP Neighbor State Changes
 Recipe 7.12. Limiting EIGRP's Bandwidth Utilization
 Recipe 7.13. EIGRP Stub Routing
 Recipe 7.14. Route Tagging
 Recipe 7.15. Viewing EIGRP Status
 Chapter 8. OSPF
 Introduction
 Recipe 8.1. Configuring OSPF
 Recipe 8.2. Filtering Routes in OSPF
 Recipe 8.3. Adjusting OSPF Costs
 Recipe 8.4. Creating a Default Route in OSPF
 Recipe 8.5. Redistributing Static Routes into OSPF
 Recipe 8.6. Redistributing External Routes into OSPF
 Recipe 8.7. Manipulating DR Selection
 Recipe 8.8. Setting the OSPF RID
 Recipe 8.9. Enabling OSPF Authentication
 Recipe 8.10. Selecting the Appropriate Area Types
 Recipe 8.11. Summarizing Routes in OSPF
 Recipe 8.12. Disabling OSPF on Certain Interfaces
 Recipe 8.13. OSPF Route Tagging
 Recipe 8.14. Logging OSPF Adjacency Changes
 Recipe 8.15. Adjusting OSPF Timers
 Recipe 8.16. Viewing OSPF Status with Domain Names
 Recipe 8.17. Debugging OSPF
 Chapter 9. BGP
 Introduction
 Recipe 9.1. Configuring BGP
 Recipe 9.2. Using eBGP Multihop
 Recipe 9.3. Adjusting the Next-Hop Attribute
 Recipe 9.4. Connecting to Two ISPs
 Recipe 9.5. Connecting to Two ISPs with Redundant Routers
 Recipe 9.6. Restricting Networks Advertised to a BGP Peer
 Recipe 9.7. Adjusting Local Preference Values
 Recipe 9.8. Load Balancing
 Recipe 9.9. Removing Private ASNs from the AS Path
 Recipe 9.10. Filtering BGP Routes Based on AS Paths
 Recipe 9.11. Reducing the Size of the Received Routing Table
 Recipe 9.12. Summarizing Outbound Routing Information
 Recipe 9.13. Prepending ASNs to the AS Path
 Recipe 9.14. Redistributing Routes with BGP
 Recipe 9.15. Using Peer Groups
 Recipe 9.16. Authenticating BGP Peers
 Recipe 9.17. Putting It All Together
 Chapter 10. Frame Relay
 Introduction
 Recipe 10.1. Setting Up Frame Relay withPoint-to-Point Subinterfaces
 Recipe 10.2. Adjusting LMI Options
 Recipe 10.3. Setting Up Frame Relay with Map Statements
 Recipe 10.4. Using Multipoint Subinterfaces
 Recipe 10.5. Configuring Frame Relay SVCs
 Recipe 10.6. Simulating a Frame Relay Cloud
 Recipe 10.7. Compressing Frame Relay Data on a Subinterface
 Recipe 10.8. Compressing Frame Relay Data with Maps
 Recipe 10.9. Viewing Frame Relay Status Information
 Chapter 11. Queueing and Congestion
 Introduction
 Recipe 11.1. Fast Switching and CEF
 Recipe 11.2. Setting the DSCP or TOS Field
 Recipe 11.3. Using Priority Queueing
 Recipe 11.4. Using Custom Queueing
 Recipe 11.5. Using Custom Queues with Priority Queues
 Recipe 11.6. Using Weighted Fair Queueing
 Recipe 11.7. Using Class-Based Weighted Fair Queueing
 Recipe 11.8. Controlling Congestion with WRED
 Recipe 11.9. Using RSVP
 Recipe 11.10. Using Generic Traffic Shaping
 Recipe 11.11. Using Frame-Relay Traffic Shaping
 Recipe 11.12. Using Committed Access Rate
 Recipe 11.13. Implementing Standards-BasedPer-Hop Behavior
 Recipe 11.14. Viewing Queue Parameters
 Chapter 12. Tunnels and VPNs
 Introduction
 Recipe 12.1. Creating a Tunnel
 Recipe 12.2. Tunneling Foreign Protocols in IP
 Recipe 12.3. Tunneling with Dynamic Routing Protocols
 Recipe 12.4. Viewing Tunnel Status
 Recipe 12.5. Creating an EncryptedRouter-to-Router VPN
 Recipe 12.6. Generating RSA Keys
 Recipe 12.7. Creating a Router-to-Router VPN with RSA Keys
 Recipe 12.8. Creating a VPN Between a Workstation and a Router
 Recipe 12.9. Check IPSec Protocol Status
 Chapter 13. Dial Backup
 Introduction
 Recipe 13.1. Automating Dial Backup
 Recipe 13.2. Using Dialer Interfaces
 Recipe 13.3. Using an Async Modem on the AUX Port
 Recipe 13.4. Using Backup Interfaces
 Recipe 13.5. Using Dialer Watch
 Recipe 13.6. Ensuring Proper Disconnection
 Recipe 13.7. View Dial Backup Status
 Recipe 13.8. Debugging Dial Backup
 Chapter 14. NTP and Time
 Introduction
 Recipe 14.1. Timestamping Router Logs
 Recipe 14.2. Setting the Time
 Recipe 14.3. Setting the Time Zone
 Recipe 14.4. Adjusting for Daylight Saving Time
 Recipe 14.5. Synchronizing the Time on All Routers (NTP)
 Recipe 14.6. Configuring NTP Redundancy
 Recipe 14.7. Setting the Router as the NTP Master for the Network
 Recipe 14.8. Changing NTP Synchronization Periods
 Recipe 14.9. Using NTP to Send Periodic Broadcast Time Updates
 Recipe 14.10. Using NTP to Send Periodic Multicast Time Updates
 Recipe 14.11. Enabling and Disabling NTP Per Interface
 Recipe 14.12. NTP Authentication
 Recipe 14.13. Limiting the Number of Peers
 Recipe 14.14. Restricting Peers
 Recipe 14.15. Setting the Clock Period
 Recipe 14.16. Checking the NTP Status
 Recipe 14.17. Debugging NTP
 Chapter 15. DLSw
 Introduction
 Recipe 15.1. Configuring DLSw
 Recipe 15.2. Using DLSw to Bridge Between Ethernet and Token Ring
 Recipe 15.3. Converting Ethernet and Token Ring MAC Addresses
 Recipe 15.4. Configuring SDLC
 Recipe 15.5. Configuring SDLC for Multidrop Connections
 Recipe 15.6. Using STUN
 Recipe 15.7. Using BSTUN
 Recipe 15.8. Controlling DLSw Packet Fragmentation
 Recipe 15.9. Tagging DLSw Packets for QoS
 Recipe 15.10. Supporting SNA Priorities
 Recipe 15.11. DLSw+ Redundancy and Fault Tolerance
 Recipe 15.12. Viewing DLSw Status Information
 Recipe 15.13. Viewing SDLC Status Information
 Recipe 15.14. Debugging DSLw
 Chapter 16. Router Interfaces and Media
 Introduction
 Recipe 16.1. Viewing Interface Status
 Recipe 16.2. Configuring Serial Interfaces
 Recipe 16.3. Using an Internal T1 CSU/DSU
 Recipe 16.4. Using an Internal ISDN PRI Module
 Recipe 16.5. Using an Internal 56Kbps CSU/DSU
 Recipe 16.6. Configuring an Async Serial Interface
 Recipe 16.7. Configuring ATM Subinterfaces
 Recipe 16.8. Setting Payload Scrambling on an ATM Circuit
 Recipe 16.9. Configuring Ethernet Interface Features
 Recipe 16.10. Configuring Token Ring Interface Features
 Recipe 16.11. Connecting VLAN Trunks With ISL
 Recipe 16.12. Connecting VLAN Trunks with 802.1Q
 Chapter 17. Simple Network Management Protocol
 Introduction
 Recipe 17.1. Configuring SNMP
 Recipe 17.2. Extracting Router Information via SNMP Tools
 Recipe 17.3. Recording Important Router Information for SNMP Access
 Recipe 17.4. Extracting Inventory Information from a List of Routers with SNMP
 Recipe 17.5. Using Access Lists to Protect SNMP Access
 Recipe 17.6. Logging Unauthorized SNMP Attempts
 Recipe 17.7. Limiting MIB Access
 Recipe 17.8. Using SNMP to Modify a Router's Running Configuration
 Recipe 17.9. Using SNMP to Copy a New IOS Image
 Recipe 17.10. Using SNMP to Perform Mass Configuration Changes
 Recipe 17.11. Preventing Unauthorized Configuration Modifications
 Recipe 17.12. Making Interface Table Numbers Permanent
 Recipe 17.13. Enabling SNMP Traps and Informs
 Recipe 17.14. Sending syslog Messages as SNMP Traps and Informs
 Recipe 17.15. Setting SNMP Packet Size
 Recipe 17.16. Setting SNMP Queue Size
 Recipe 17.17. Setting SNMP Timeout Values
 Recipe 17.18. Disabling Link Up/Down Traps per Interface
 Recipe 17.19. Setting the IP Source Address for SNMP Traps
 Recipe 17.20. Using RMON to Send Traps
 Recipe 17.21. Enabling SNMPv3
 Recipe 17.22. Using SAA
 Chapter 18. Logging
 Introduction
 Recipe 18.1. Enabling Local Router Logging
 Recipe 18.2. Setting the Log Size
 Recipe 18.3. Clearing the Router's Log
 Recipe 18.4. Sending Log Messages to Your Screen
 Recipe 18.5. Using a Remote Log Server
 Recipe 18.6. Enabling Syslog on a Unix Server
 Recipe 18.7. Changing the Default Log Facility
 Recipe 18.8. Restricting What Log Messages Are Sent to the Server
 Recipe 18.9. Setting the IP Source Address for Syslog Messages
 Recipe 18.10. Logging Router Syslog Messages in Different Files
 Recipe 18.11. Maintaining Syslog Files on the Server
 Recipe 18.12. Testing the Syslog Sever Configuration
 Recipe 18.13. Preventing the Most Common Messages from Being Logged
 Recipe 18.14. Rate-Limiting Syslog Traffic
 Chapter 19. Access Lists
 Introduction
 Recipe 19.1. Filtering by Source or Destination IP Address
 Recipe 19.2. Adding a Comment to an ACL
 Recipe 19.3. Filtering by Application
 Recipe 19.4. Filtering Based on TCP Header Flags
 Recipe 19.5. Restricting TCP Session Direction
 Recipe 19.6. Filtering Multiport Applications
 Recipe 19.7. Filtering Based on DSCP and TOS
 Recipe 19.8. Logging when an Access List Is Used
 Recipe 19.9. Logging TCP Sessions
 Recipe 19.10. Analyzing ACL Log Entries
 Recipe 19.11. Using Named and Reflexive Access Lists
 Recipe 19.12. Dealing with Passive Mode FTP
 Recipe 19.13. Using Context-Based Access Lists
 Chapter 20. DHCP
 Introduction
 Recipe 20.1. Using IP Helper Addresses for DHCP
 Recipe 20.2. Limiting the Impact of IP Helper Addresses
 Recipe 20.3. Using DHCP to Dynamically Configure Router IP Addresses
 Recipe 20.4. Dynamically Allocating Client IP Addresses via DHCP
 Recipe 20.5. Defining DHCP Configuration Options
 Recipe 20.6. Defining DHCP Lease Periods
 Recipe 20.7. Allocating Static IP Addresses with DHCP
 Recipe 20.8. Configuring a DHCP Database Client
 Recipe 20.9. Configuring Multiple DHCP Servers per Subnet
 Recipe 20.10. Showing DHCP Status
 Recipe 20.11. Debugging DHCP
 Chapter 21. NAT
 Introduction
 Recipe 21.1. Configuring Basic NAT Functionality
 Recipe 21.2. Allocating External Addresses Dynamically
 Recipe 21.3. Allocating External Addresses Statically
 Recipe 21.4. Translating Some Addresses Statically and Others Dynamically
 Recipe 21.5. Translating in Both Directions Simultaneously
 Recipe 21.6. Rewriting the Network Prefix
 Recipe 21.7. Adjusting NAT Timers
 Recipe 21.8. Changing TCP Ports for FTP
 Recipe 21.9. Checking NAT Status
 Recipe 21.10. Debugging NAT
 Chapter 22. Hot Standby Router Protocol
 Introduction
 Recipe 22.1. Configuring Basic HSRP Functionality
 Recipe 22.2. Using HSRP Preempt
 Recipe 22.3. Making HSRP React to Problems on Other Interfaces
 Recipe 22.4. Load Balancing with HSRP
 Recipe 22.5. Redirecting ICMP with HSRP
 Recipe 22.6. Manipulating HSRP Timers
 Recipe 22.7. Using HSRP on a Token Ring Network
 Recipe 22.8. HSRP SNMP Support
 Recipe 22.9. Increasing HSRP Security
 Recipe 22.10. Showing HSRP State Information
 Recipe 22.11. Debugging HSRP
 Chapter 23. IP Multicast
 Introduction
 Recipe 23.1. Configuring Basic Multicast Functionality with PIM-DM
 Recipe 23.2. Routing Multicast Traffic with PIMSM and BSR
 Recipe 23.3. Routing Multicast Traffic with PIM-SM and Auto-RP
 Recipe 23.4. Configuring Routing for a Low Frequency Multicast Application
 Recipe 23.5. Configuring CGMP
 Recipe 23.6. Static Multicast Routes and Group Memberships
 Recipe 23.7. Routing Multicast Traffic with MOSPF
 Recipe 23.8. Routing Multicast Traffic with DVMRP
 Recipe 23.9. DVMRP Tunnels
 Recipe 23.10. Controlling Multicast Scope with TTL
 Recipe 23.11. Using Administratively Scoped Addressing
 Recipe 23.12. Exchanging Multicast Routing Information with MBGP
 Recipe 23.13. Using MSDP to Discover External Sources
 Recipe 23.14. Converting Broadcasts to Multicasts
 Recipe 23.15. Showing Multicast Status
 Recipe 23.16. Debugging Multicast Routing
 Appendix A. External Software Packages
 Section A.1. Perl
 Section A.2. Expect
 Section A.3. NET-SNMP
 Section A.4. PuTTY
 Section A.5. OpenSSH
 Section A.6. Ethereal
 Appendix B. IP Precedence, TOS, and DSCP Classifications
 Section B.1. Combining TOS and IP Precedence to Mimic DSCP
 Section B.2. RSVP
 Section B.3. Queueing Algorithms
 Section B.4. Dropping Packets and Congestion Avoidance
 Colophon
 Index

Top

This document is created with the unregistered version of CHM2PDF Pilot

http://www.oreillynet.com/cs/catalog/view/au/1140?x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/1140?x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/721?x-t=book.view

This document is created with the unregistered version of CHM2PDF Pilot

Copyright 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps. The association between the image of a
black jaguar and the topic of Cisco is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

Top

This document is created with the unregistered version of CHM2PDF Pilot

http://safari.oreilly.com
mailto:corporate@oreilly.com

Preface

Cisco routers are nearly ubiquitous in IP networks. They are extremely flexible and reliable devices, and the number
and variety of features grows with each new release of the Internetwork Operating System (IOS). While Cisco Press
and several other publishers supply excellent documentation of router features both online and in a variety of books,
knowing when, why, and how to use these features is sometimes difficult. There are often many different ways to
solve any given networking problem using Cisco devices, and some solutions are clearly more effective than others.

The two immediate questions facing any network engineer are: Which of the many potential solutions is the most
appropriate for a particular situation? and, Once you have decided to use a particular feature, how should you
implement it? Unfortunately, the feature documentation describing a particular command or feature frequently does
very little to answer either of these questions.

Everybody who has worked with Cisco routers for any length of time has had to ask their friends and co-workers for
example router configuration files that show how to solve a common problem. A good working configuration
example can often save huge amounts of time and minimize the frustration that sometimes comes with implementing a
feature that you've never used before.

Cisco Cookbook is not intended to replace the detailed feature documentation included in books such as Cisco IOS
in a Nutshell (O'Reilly) or information available on Cisco's web site (http://www.cisco.com). While we don't have the
space to provide details about how particular protocols actually work, you can find this information in the Internet
Engineering Task Force (IETF) Request for Comment (RFC) documents (located at http://www.ietf.org/rfc.html)
and a wide variety of books.

Instead, this book is a complement to those sources of information. They will tell you what a routing protocol is, how
it works, and which command turns it on. Cisco Cookbook will help you select the right routing protocol and
configure it in the most efficient way for your network.

This book includes a collection of sample router configurations and scripts that we have found useful in real-world
networks. It also includes, wherever possible, our advice on what features to use in which situations, and how to use
them most effectively. There are many common mistakes that we have seen before, and we want to help you to avoid
making them.

All of the recipes in this book should work with IOS levels 11.3, 12.0, 12.1, 12.2, and 12.3. And, except where
noted, they should run on any Cisco router platform. We have indicated when we use features that are only available
with certain release levels or code sets, and in some cases offered workarounds for older versions. It is also
important to remember that most of the recipes will work not only with Cisco routers, but also with any Catalyst
switches that run IOS (but unfortunately not CatOS switches). In particular, all of the recipes that pertain to AAA,
security, syslog, and SNMP should work well on these devices.

We welcome feedback from our readers. If you have comments, suggestions or ideas for other recipes, please let us
know. If there are future editions of the Cisco Cookbook, we will include any suggestions that we think are especially

This document is created with the unregistered version of CHM2PDF Pilot

http://www.cisco.com
http://www.ietf.org/rfc.html

useful. You can reach us at: kevind@manageablenetworks.com or ijbrown@hotmail.com.

Top

This document is created with the unregistered version of CHM2PDF Pilot

mailto:kevind@manageablenetworks.com
mailto:ijbrown@hotmail.com

Organization

As the name suggests, Cisco Cookbook is organized as a series of recipes. Each recipe begins with a problem
statement that describes a common situation that you might face. After each problem statement is a brief solution that
shows a sample router configuration or script that you can use to resolve that particular problem. A discussion
section then describes the solution, how it works, and when you should or should not use it.

We have tried to construct the recipes so that you should be able to turn directly to the one that addresses your
specific problem and find a useful solution without needing to read the entire book. If the solution includes terms or
concepts that you are not familiar with, the chapter introductions should help bridge the gap. Many recipes refer to
other recipes or chapters that discuss related topics. We have also included a variety of references to other sources
in case you need more background information on a particular subject.

The chapters are organized by the feature or protocol discussed. If you are looking for information on a particular
feature such as NAT, NTP, or SNMP, you can turn to that chapter and find a variety of related recipes. Most
chapters list basic problems first, and any unusual or complicated situations last. But there are some exceptions to
this, where we have opted instead to group related recipes together.

Top

This document is created with the unregistered version of CHM2PDF Pilot

What's in This Book

The first four chapters cover what would be considered essential system administration functions if a router were a
server. Chapter 1 covers router configuration and file management issues. In Chapter 2, we turn to useful router
management tricks such as command aliases, using CDP and DNS, tuning buffers, and creating exception dumps.
This chapter ends with a set of four scripts that generate various useful reports to help you manage your routers.
Chapter 3 discusses user access and privileges on the router. Chapter 4 extends this discussion to using TACACS+
to provide centralized management of user access to your routers.

The next five chapters cover various aspects of IP routing. Chapter 5 looks at IP routing in general, including static
routes and administrative distances. In Chapter 6, we focus on RIP, including both Versions 1 and 2. Chapter 7
looks at EIGRP, and Chapter 8 at OSPF. In Chapter 9, we discuss the BGP protocol, which controls all IP routing
through the backbone of the Internet.

The remaining chapters all cover separate topics. We look at the popular Frame Relay WAN protocol in Chapter 10.

Chapter 11 discusses queuing and congestion. This chapter also examines various IP Quality of Service issues.

In Chapter 12, we look at IP tunnels and VPNs. This chapter includes a discussion of Cisco's IPSec implementation.

We turn to issues related to dial backup in Chapter 13.

In Chapter 14, we look at time. We include a relatively detailed discussion of the NTP protocol, which you can use
to synchronize the clocks of all of your routers. You can then use them as time sources for other equipment, including
application servers on your network.

Chapter 15 is primarily concerned with configuring the DLSw protocol. It also looks at SNA and SDLC protocols,
which are often carried over IP networks using DLSw.

In Chapter 16, we show how to configure several of the most popular interface types on a Cisco router.

Chapter 17 and Chapter 18 look at the closely related issues of network management and logging. In Chapter 17,
we discuss SNMP in particular. This chapter includes several router configuration examples to use with SNMP, as
well as a number of scripts that you can use to help manage your Cisco equipment. Chapter 18 looks at issues
related to managing the router's event logs, as well how to use the syslog protocol to send these log messages to a
central server.

It's impossible to do much on a Cisco router without having a good understanding of access lists. There are several
different kinds of access lists, and Chapter 19 shows several useful and interesting applications of the various
IP-specific access lists.

This document is created with the unregistered version of CHM2PDF Pilot

In Chapter 20, we look at DHCP. Routers usually just act as DHCP proxy devices, but we also show how to use
the router as a DHCP server, or even as a client.

Chapter 21 talks about NAT, which allows you to use private IP addresses and resolve conflicting address ranges
between networks.

One of the best ways to build a fault tolerant LAN is to configure two or more routers to share a single IP address
using HSRP. We show several different HSRP configurations in Chapter 22.

In Chapter 23, we look at how to implement multicast routing functionality on a Cisco router.

We also include two appendixes. Appendix A discusses the various external software tools that we use throughout
the book, and shows how to obtain your own copies of these packages. Appendix B gives some helpful background
on IP Quality of Service and the various queueing algorithms that you can use on Cisco routers.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Conventions

The following formatting conventions are used throughout this book:

•

Italic is used for commands, file names, directories, script variables, keywords, emphasis, technical terms,
and Internet domain names.

•

Constant width is used for code sections, interface names, and IP addresses.
•

Constant width italic is used for replaceable text.
•

Constant width bold is used for user input and emphasis within code.
•

Constant width bold italic is used to highlight replaceable items within code.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Comments and Questions

Please address comments and questions about this book to the publisher:
 O'Reilly & Associates, Inc.1005 Gravenstein Highway NorthSebastopol, CA 95472(800) 998-9938 (in the United
States or Canada)(707) 829-0515 (international/local)(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can access this
page at:
 http://www.oreilly.com/catalog/ciscockbk/

To comment or ask technical questions about this book, send email to:
 bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web
site at:
 http://www.oreilly.com

Top

This document is created with the unregistered version of CHM2PDF Pilot

http://www.oreilly.com/catalog/ciscockbk/
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Acknowledgments

Writing this book was a huge project, and we are grateful that so many people helped us in different ways. We want
to extend particularly large thanks to John Karek for helping to set up the lab environment that we used to testing
recipes; Jackman Chan, who ran some of the more obscure and difficult debugging traces for us; and to David Close
of Cisco Canada, who very generously loaned us equipment at a critical phase.

Everybody at O'Reilly was great to work with. We particularly appreciate the hard work of our editors, Jim Sumser,
Mike Loukides, and Phil Dangler. They encouraged us as we wrote. And, when we were done writing, they wrestled
the results into something we all could be proud of. Jessamyn Read did a great job with the figures, and we were
completely thrilled with Ellie Volckhausen's cover art.

We had three technical reviewers for this book, and they each made a huge contribution by both pointing out our
errors and making useful suggestions on how to present the material. Peter Rybaczyk and Ravi Malhotra both
showed incredible breadth and depth of knowledge of Cisco routers and networking in general, as well as offering
help with the overall structure and flow of the book. And we leaned very heavily on Iljitsch van Beijnum for help with
the BGP chapter.

Kevin Dooley

There is a lot more to writing a book than just the writing. I would like to thank Sherry Biscope, who has now
survived my writing two books. And, midway through this one, she almost crazily agreed to marry me. But she did
far more than merely survive. She encouraged and prodded, she made time and space for this book, and she barely
complained at all when piles of books, papers, routers, and cables took over the living room. And thanks also to
Ginger the beagle who slept in the big comfy chair throughout the writing of this book, always within petting distance,
usually very forgiving of the delays in walks and dinner time.

Ian J. Brown

I would like to thank my beautiful wife, Lisa, who supported me unconditionally throughout this project, and in doing
so, became the sole caregiver to our young children. Without your assistance and encouragement, this book would
never have happened. Special thanks also to my son, Ethan, and daughter, Darby, who endured many evenings
without a father. You mean the world to me and I will love you always and forever. I would also like to thank Alan
Morewood, who inspired more than one section of this book.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 1. Router Configuration and File
Management

Introduction

Recipe 1.1. Configuring the Router via TFTP

Recipe 1.2. Saving Router Configuration to Server

Recipe 1.3. Booting the Router Using a Remote Configuration File

Recipe 1.4. Storing Configuration Files Larger than NVRAM

Recipe 1.5. Clearing the Startup Configuration

Recipe 1.6. Loading a New IOS Image

Recipe 1.7. Booting a Different IOS Image

Recipe 1.8. Booting Over the Network

Recipe 1.9. Copying an IOS Image to a Server

Recipe 1.10. Copying an IOS Image Through the Console

Recipe 1.11. Deleting Files from Flash

Recipe 1.12. Partitioning Flash

Recipe 1.13. Using the Router as a TFTP Server

Recipe 1.14. Using FTP from the Router

Recipe 1.15. Generating Large Numbers of Router Configurations

Recipe 1.16. Changing the Configurations of Many Routers at Once

Recipe 1.17. Extracting Hardware Inventory Information

Recipe 1.18. Backing Up Router Configurations

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

You can think of a Cisco router as a special-purpose computer. It has its own operating system, which is called the
Internetwork Operating System (IOS), as well as files and filesystems. So we'll start with a discussion of the basic
system administration functions that a router engineer must perform. This includes managing your router's filesystems,
upgrading the operating system, doing backups, and restoring the system configuration.

Cisco routers use flash memory, rather than disks, for storing information. Flash storage media is significantly more
expensive and slower than disk storage, but the amount of storage needed to run a router is relatively small compared
to the amount needed to run a general-purpose computer. Flash also has the important benefit that it tends to be
more reliable than disk storage.

Flash storage is similar to Random Access Memory (RAM), but it doesn't need power to retain information, so it is
called non-volatile. And, unlike Read Only Memory (ROM), you can erase and rewrite flash easily. There are other
types of non-volatile solid state storage, such as Erasable Programmable Read Only Memory (EPROM) and
Electronically Erasable Programmable Read Only Memory (EEPROM). EPROM is not suitable for routers because
it generally requires an external device such as an ultraviolet light shone through a window on the chip to erase it.
EEPROM, on the other hand, can be erased by simply sending an erase signal to the chip. But there is a key
difference between EEPROM and flash memory: when you erase something from an EEPROM device, you must
erase the entire device, while flash devices allow selective deletion of parts of the medium.

This is an important feature for routers, because you don't always want to erase the entire storage medium in order to
erase a single file. In Recipe 1.11 and Recipe 1.12, we discuss ways to erase single files on some types of routers,
depending on the type of filesystem used.

There are at least two main pieces of non-volatile storage in a Cisco router. The router's configuration information is
stored in a device called the Non-Volatile RAM (NVRAM), and the IOS images are stored in a device called the
flash (lowercase). It's important to keep these names straight because, of course, all Flash memory is non-volatile
RAM. And, in fact, most routers use Flash technology for their NVRAM. So it's easy to get confused by the terms.

On most Cisco routers, the NVRAM area is somewhere between 16 and 256Kb, depending on the size and
function of the router. Larger routers are expected to have larger configuration files, so they need more NVRAM.
The flash device, on the other hand, is usually upgradeable, and can be anywhere from a few megabytes to hundreds
of megabytes.

We often talk about a router's configuration file, but there are actually two important configuration files on any router.
There is the configuration file that describes the current running state of the router, which is called the running-config.
Then, there is the configuration file that the router uses to boot, which is called the startup-config. Only the
startup-config is stored in NVRAM, so it is important to periodically check that the version of the configuration in
the NVRAM is synchronized with the version that the router is currently running. Otherwise you could get a surprise
from ancient history the next time the router reboots. You can synchronize the two configuration files by simply
copying the running-config onto the startup-config file:
 Router1#copy running-config startup-config

This document is created with the unregistered version of CHM2PDF Pilot

Many Cisco engineers, including the authors, still use the old-fashioned version of this command out of force of habit:
 Router1#write memory

However, this command is not only deprecated, it's also less descriptive of what the router is doing.

The router uses the larger flash storage device for holding the operating system, or IOS. Unlike the operating systems
on most computers, the IOS is a single file containing all of the features and functions available on the router. You can
obtain the IOS image files from Cisco on CD or, if you have an account on their system, you can download IOS files
from the Cisco web site using FTP.

Most of the examples throughout this book assume that you have IOS Version 12. However, many of the features
we discuss are also available in earlier versions. Although there may be slight syntax changes, we expect that Cisco
will continue to support all of the features we describe well into the future. It is important to be flexible because if you
work with Cisco routers a lot, you will encounter a large variety of different IOS versions, with various subtle
differences. Unfortunately, some of these subtle differences are actually bugs. Cisco offers a detailed bug tracking
system on their web site for registered users.

There are several important things to consider when you go to change the IOS version on a router. First is the feature
set. For each IOS release, Cisco produces several different versions. They usually offer an Enterprise Feature Set,
which includes all of the different feature options available at a given time. Because the IOS is a monolithic file
containing all features and all commands, the Enterprise IOS files are usually quite large. The Enterprise version is
generally much more expensive than the various stripped-down versions.

The simplest IOS version is usually the IP Only Feature Set. As the name suggests, this includes only TCP/IP based
functionality. In most networks, you will find that the IP Only Feature Set is more than sufficient. In fact, almost all of
the recipes in this book will work with the IP Only version of IOS.

If you require other protocols such as IPX or AppleTalk, Cisco produces an IOS Feature Set called Desktop that
contains these protocols. They also offer several other important variations such as IP Plus, IP Plus IPSec 56, IP
Plus IPSec 3DES, and so forth. The contents of these different versions (and even their names to some extent) vary
from release to release. We encourage you to consult Cisco's feature matrixes to ensure that the features you need
are in the IOS version that you have.

One of the most important considerations with any IOS release is whether you have sufficient RAM and Flash
memory to support the new version. You can see how much storage your router has by looking at the output of the
show version command.

The other important thing to remember about IOS images on Cisco routers is that every router has a fallback image
located in the router's ROM. This IOS image cannot be changed or upgraded without physically replacing the ROM
chips in the router.

The router's ROM contains three items: the power on self test (POST), the bootstrap program, and a limited version
of the router's operating system. The router uses the bootstrap program while booting. The IOS image in ROM is
usually an extremely stripped-down version that doesn't support many common features (routing protocols, for
example). In the normal boot cycle, the router will first load the POST, then the bootstrap program followed by the
appropriate IOS image. Please refer to Recipe 1.7 for more information about booting from different IOS files.

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.7 also shows how to adjust the configuration register values. These values set a variety of boot options, and
even allow you to force the router to stop its boot process before loading the IOS. This can be useful if the IOS
image is corrupted, or if you need to do password recovery.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.1 Configuring the Router via TFTP

1.1.1 Problem

You want to load configuration commands via the Trivial File Transfer Protocol (TFTP).

1.1.2 Solution

You can use the copy tftp: command to configure the router via the TFTP:
 Router1#copy tftp://172.25.1.1/NEWCONFIG running-config

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.2 Saving Router Configuration to Server

1.2.1 Problem

You want to store a backup copy of your router's configuration on a TFTP server.

1.2.2 Solution

This example shows how to use TFTP to upload a copy of the router's active configuration to a remote server:
 Freebsd% touch /tftpboot/router1-confg

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.3 Booting the Router Using a Remote Configuration File

1.3.1 Problem

You want to boot the router using an alternate configuration.

1.3.2 Solution

The following set of commands allows you to automatically load a configuration file located on a remote TFTP server
when the router boots:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.4 Storing Configuration Files Larger than NVRAM

1.4.1 Problem

Your configuration file has become larger than the router's available NVRAM.

1.4.2 Solution

You can compress your router's configuration file before saving it to NVRAM to allow you to save more
configuration information. The command service compress-config will compress the configuration information when
the router saves the file, and uncompress it when it is required:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.5 Clearing the Startup Configuration

1.5.1 Problem

You want to clear an old configuration out of your router and return it to a factory default configuration.

1.5.2 Solution

You can delete the current startup configuration files and return the router to its factory default settings with the erase
nvram: command:
 Router1#erase nvram:

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.6 Loading a New IOS Image

1.6.1 Problem

You want to upgrade the IOS image that your router uses.

1.6.2 Solution

The copy tftp command allows you to use TFTP to download a new IOS version into the router's Flash memory:
 Router1#copy tftp://172.25.1.1/c2600-ik9o3s-mz.122-12a.bin flash:

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.7 Booting a Different IOS Image

1.7.1 Problem

You want to boot using an alternate IOS image.

1.7.2 Solution

To specify which IOS image the router should load next time it reboots, use the boot system command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.8 Booting Over the Network

1.8.1 Problem

You want to load an IOS image that is too large to store on your router's local flash.

1.8.2 Solution

You can load an IOS image that is larger than your router's flash by configuring the router to use TFTP to download
the image before booting:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.9 Copying an IOS Image to a Server

1.9.1 Problem

You want to save a backup copy of your IOS image on a TFTP server.

1.9.2 Solution

You can upload a copy of your router's IOS image to a TFTP server with the following set of commands:
 Freebsd% touch /tftpboot/c2600-ik9o3s-mz.122-12a.bin

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.10 Copying an IOS Image Through the Console

1.10.1 Problem

You want to load an IOS image into your router through a serial connection to the console or AUX ports.

1.10.2 Solution

You can use the following set of commands to copy an IOS image onto a router through the console or the AUX
port:
 Router1#copy xmodem: slot1:

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.11 Deleting Files from Flash

1.11.1 Problem

You want to erase files from your router's flash.

1.11.2 Solution

To delete all of the files from your router's flash memory, use the erase command:
 Router1#erase slot1:

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.12 Partitioning Flash

1.12.1 Problem

You want to change how your router's flash memory is partitioned.

1.12.2 Solution

The partition command allows you to create a partition in the router's flash memory:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.13 Using the Router as a TFTP Server

1.13.1 Problem

You want to configure your router to act as a TFTP server.

1.13.2 Solution

The tftp-server command configures the router to act as a TFTP server:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.14 Using FTP from the Router

1.14.1 Problem

You want to use FTP directly from your router to download configuration or IOS files.

1.14.2 Solution

The copy ftp: command lets the router exchange files using FTP:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.15 Generating Large Numbers of Router Configurations

1.15.1 Problem

You need to generate hundreds of router configuration files for a big network rollout.

1.15.2 Solution

When building a large WAN, you will usually configure the remote branch routers similarly according to a template.
This is a good basic design principle, but it also makes it relatively easy to create the router configuration files.
Example 1-1 uses a Perl script to merge a CSV file containing basic router information with a standard template file.
It takes the CSV file as input on STDIN.

Example 1-1. create-configs.pl
 #!/usr/local/bin/perl

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.16 Changing the Configurations of Many Routers at Once

1.16.1 Problem

You want to make a configuration change to a large number of routers.

1.16.2 Solution

The Expect script in Example 1-2 makes the same configuration changes to a list of routers using Telnet. When it
finishes running, the script produces a status report that identifies which devices, if any, failed to update properly. No
arguments are required or expected.

Example 1-2. rtrchg.exp
 #!/usr/local/bin/expect

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.17 Extracting Hardware Inventory Information

1.17.1 Problem

You need an up-to-date list of the hardware configurations and IOS levels of all of your routers.

1.17.2 Solution

The Bourne shell script in Example 1-3 uses SNMP to extract useful version information from a list of routers. By
default, the script stores this data in CSV format so that you can easily import it into a spreadsheet for analysis. No
arguments are required or expected.

Example 1-3. inventory.sh
 #!/bin/sh

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 1.18 Backing Up Router Configurations

1.18.1 Problem

You need to download all of the active router configurations to see what has changed recently.

1.18.2 Solution

The Perl script in Example 1-4 will automatically retrieve and store router configuration files on a nightly basis. By
default, it will retain these configuration files for 30 days. The script should be run through the Unix cron utility to get
the automatic nightly updates, but you can also run it manually if required. No arguments are required or expected.

Example 1-4. backup.pl
 #!/usr/local/bin/perl

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 2. Router Management

Introduction

Recipe 2.1. Creating Command Aliases

Recipe 2.2. Managing the Router's ARP Cache

Recipe 2.3. Tuning Router Buffers

Recipe 2.4. Using the Cisco Discovery Protocol

Recipe 2.5. Disabling the Cisco Discovery Protocol

Recipe 2.6. Using the Small Servers

Recipe 2.7. Enabling HTTP Access to a Router

Recipe 2.8. Using Static Hostname Tables

Recipe 2.9. Enabling Domain Name Services

Recipe 2.10. Disabling Domain Name Lookups

Recipe 2.11. Specifying a Router Reload Time

Recipe 2.12. Creating Exception Dump Files

Recipe 2.13. Generating a Report of Interface Information

Recipe 2.14. Generating a Report of Routing Table Information

Recipe 2.15. Generating a Report of ARP Table Information

Recipe 2.16. Generating a Server Host Table File

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Like the previous chapter, this chapter also looks at system management issues on the router. So far we've looked
primarily at general system administration issues such as filesystem management, but here we will discuss management
and tuning issues related to router performance. You'll also learn some of the techniques needed to deal with disaster
scenarios, such as how to create exception dumps.

Cisco's IOS supports a variety of special purpose protocols and services. Some of these are useful for network
management and administration, while others are more useful for testing purposes. One of the handiest features is the
Cisco Discovery Protocol (CDP), which allows you to see useful information about the Layer 2 connections between
Cisco devices. This chapter shows how to use CDP and covers some of its well-known security problems.

Disabling is often the best strategy for several other services. Some, like the HTTP management interface and various
test protocols (lumped together under the title of the TCP and UDP "small servers"), serve no real purpose in most
production networks and are disabled by default. Others, like DNS, do have useful functions and are enabled by
default.

We will discuss several important administrative features such as different methods for handling the hostnames of
other network devices and command aliases to make complex commands easier to remember and type. The chapter
concludes with a set of four useful scripts for gathering important information from your network devices.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.1 Creating Command Aliases

2.1.1 Problem

You want to create aliases for commonly-used or complex commands.

2.1.2 Solution

You can create command aliases on your router with the alias command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.2 Managing the Router's ARP Cache

2.2.1 Problem

You want to adjust the ARP table timeout value.

2.2.2 Solution

To modify the ARP timeout value, use the arp timeout configuration command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.3 Tuning Router Buffers

2.3.1 Problem

You want to change your default buffer allocations to improve router efficiency.

2.3.2 Solution

The router maintains two different sets of buffers; public buffers and interface buffers. The router uses these as
temporary storage while processing packet data. You can tune the public buffer pools as follows:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.4 Using the Cisco Discovery Protocol

2.4.1 Problem

You want to see summary information about what is connected to your router's interfaces.

2.4.2 Solution

You can selectively enable or disable Cisco Discovery Protocol (CDP) on the entire router, or on individual
interfaces:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.5 Disabling the Cisco Discovery Protocol

2.5.1 Problem

You don't want to allow adjacent devices to gain information about this router for security reasons.

2.5.2 Solution

You can disable CDP on a single interface using the no cdp enable interface configuration command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.6 Using the Small Servers

2.6.1 Problem

You want to enable or disable router services such as finger, echo, and chargen.

2.6.2 Solution

The finger application provides a remote way of seeing who is logged into the router. You can enable it with the ip
finger global configuration command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.7 Enabling HTTP Access to a Router

2.7.1 Problem

You want to configure and monitor your router using a browser interface.

2.7.2 Solution

Cisco includes an HTTP server in the IOS. You can enable this feature on a router and then use any standard web
browser instead of Telnet to access the router:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.8 Using Static Hostname Tables

2.8.1 Problem

You want to create a static host lookup table on the router.

2.8.2 Solution

The ip host command lets you configure static host entries in the router:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.9 Enabling Domain Name Services

2.9.1 Problem

You want to configure your router to use DNS to resolve hostnames.

2.9.2 Solution

To configure the router to use DNS to resolve hostnames, you need to specify a domain name and at least one name
server:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.10 Disabling Domain Name Lookups

2.10.1 Problem

You want to prevent your router from trying to connect to your typing errors.

2.10.2 Solution

To prevent the router from attempting to resolve typing errors, use the ip domain-lookup command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.11 Specifying a Router Reload Time

2.11.1 Problem

You want to set the router to automatically reload at a specified time.

2.11.2 Solution

You can set the router to reload after waiting a particular length of time with the reload in command:
 Router1#reload in 20

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.12 Creating Exception Dump Files

2.12.1 Problem

Your router is having serious problems and you need to create an exception dump to forward to Cisco's TAC.

2.12.2 Solution

To create an exception dump of a router's memory after a failure, you need to configure the exception dump
command and tell the router how to automatically transfer this information to a server:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.13 Generating a Report of Interface Information

2.13.1 Problem

You want to build a spreadsheet of active IP subnets for your network.

2.13.2 Solution

Keeping track of assigned IP subnets on a network is a vitally important but often tedious task. In large organizations,
it can be extremely difficult to maintain accurate and up-to-date addressing information. The Perl script in Example
2-1 uses SNMP to automatically gather current IP subnet information directly from the routers themselves. The script
creates an output file in CSV format so that you can easily import the information into a spreadsheet.

Example 2-1. netstat.pl
 #!/usr/local/bin/perl

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.14 Generating a Report of Routing Table Information

2.14.1 Problem

You need to extract the IP routing table from one of your routers.

2.14.2 Solution

The script in Example 2-2, rt.pl, uses SNMP to extract the routing table from a specified router, and displays this
information to STDOUT. The script expects to find a hostname or IP address of a router on the command line.

Example 2-2. rt.pl
 #!/usr/bin/perl

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.15 Generating a Report of ARP Table Information

2.15.1 Problem

You need to extract the ARP table from one of your routers to determine the MAC address associated with a
particular IP address or the IP address for a particular MAC address.

2.15.2 Solution

The script in Example 2-3, arpt.pl, extracts the ARP table for a specified router or IP address and displays the
results to STDOUT. The script expects to find a hostname or IP address of a router on the command line.

Example 2-3. arpt.pl
 #!/usr/local/bin/perl

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 2.16 Generating a Server Host Table File

2.16.1 Problem

You want to build a detailed host file containing the IP addresses and interface names of all of your routers.

2.16.2 Solution

The Perl script in Example 2-4, host.pl, builds a detailed host table that includes all of the IP addresses on each
router in a list of devices. The script is written in Perl and requires NET-SNMP to extract data from the router list.
No arguments are expected or required.

Example 2-4. host.pl
 #!/usr/local/bin/perl

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 3. User Access and Privilege Levels

Introduction

Recipe 3.1. Setting Up User IDs

Recipe 3.2. Encrypting Passwords

Recipe 3.3. Using Better Encryption Techniques

Recipe 3.4. Removing Passwords from a Router Configuration File

Recipe 3.5. Deciphering Cisco's Weak Password Encryption

Recipe 3.6. Displaying Active Users

Recipe 3.7. Sending Messages to Other Users

Recipe 3.8. Changing the Number of VTYs

Recipe 3.9. Changing VTY Timeouts

Recipe 3.10. Restricting VTY Access by Protocol

Recipe 3.11. Enabling Absolute Timeouts on VTY Lines

Recipe 3.12. Implementing Banners

Recipe 3.13. Disabling Banners on a Port

Recipe 3.14. Disabling Router Lines

Recipe 3.15. Reserving a VTY Port for Administrative Access

Recipe 3.16. Restricting Inbound Telnet Access

Recipe 3.17. Logging Telnet Access

Recipe 3.18. Setting the Source Address for Telnet

Recipe 3.19. Automating the Login Sequence

Recipe 3.20. Using SSH for Secure Access

Recipe 3.21. Changing the Privilege Level of IOS Commands

Recipe 3.22. Defining Per-User Privileges

Recipe 3.23. Defining Per-Port Privileges

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Many network administrators do only the minimum when it comes to setting up user access to their routers. This is
sufficient in networks where there are no serious security issues, and only a small number of people ever want or
need to access the router. But, unfortunately, not every administrator can be quite so cavalier.

Most of the recipes in this chapter discuss methods for securing access to routers through important measures such
as assigning usernames and passwords, controlling access-line parameters, handling remote access protocols, and
affecting privileges of users and commands.

There are several important prerequisites for this discussion. You should understand what VTYs and access lines are.
You should also have knowledge of user and command privilege levels. These topics are discussed in Chapters 4
and 13 of Cisco IOS In A Nutshell (O'Reilly).

We discuss best practices and provide a number of valuable recommendations in this chapter. We recommend
referring to the National Security Agency (NSA) router security documents for more information. This extremely
useful set of recommendations covers many different types of systems, including Cisco routers. You can download
the Cisco section of this document from http://www.nsa.gov/snac/cisco.

Many examples in this chapter make limited use of Cisco's advanced authentication methodology called
Authentication, Authorization, and Accounting (AAA). In this chapter, we will focus on purely local AAA
implementations. We discuss AAA in more detail in Chapter 4, where we describe how to centralize these servers
with TACACS+.

This chapter also contains three scripts written by the authors of this book. Two of these scripts are written in Perl,
and the other is in Expect. For more information on these languages, refer to Programming Perl and Exploring
Expect (both from O'Reilly). Appendix A includes information on obtaining copies of these packages and finding
documentation for them.

Top

This document is created with the unregistered version of CHM2PDF Pilot

http://www.nsa.gov/snac/cisco

Recipe 3.1 Setting Up User IDs

3.1.1 Problem

You want to assign individual (or group) user IDs and passwords to network staff.

3.1.2 Solution

Use the following set of configuration commands to enable locally administered user IDs:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.2 Encrypting Passwords

3.2.1 Problem

You want to encrypt passwords so that they do not appear in plain-text in the router configuration file.

3.2.2 Solution

To enable password encryption on a router, use the service password-encryption configuration command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.3 Using Better Encryption Techniques

3.3.1 Problem

You want to assign a privileged password using a stronger encryption standard than Cisco's trivial default encryption.

3.3.2 Solution

To enable strong, nonreversible encryption of the privileged password, use the enable secret configuration command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.4 Removing Passwords from a Router Configuration File

3.4.1 Problem

You want to remove sensitive information from a router configuration file.

3.4.2 Solution

The following Perl script removes sensitive information such as passwords and SNMP community strings from
configuration files. The script takes the name of the file containing the router's configuration as its only command-line
argument.

Here's some example output:
 Freebsd% strip.pl Router1-confg

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.5 Deciphering Cisco's Weak Password Encryption

3.5.1 Problem

You want to reverse the weak Cisco password encryption algorithm to recover forgotten passwords.

3.5.2 Solution

To recover a lost router password from a configuration file, use the following Perl script to decipher weakly
encrypted passwords. This script expects to read router configuration commands via STDIN. It then prints the same
commands to standard STDOUT with the passwords decrypted.

Here is an example of the program's output:
 Freebsd% cpwcrk.pl < Router1-confg

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.6 Displaying Active Users

3.6.1 Problem

You want to find out who else is logged into a router.

3.6.2 Solution

To see which users are currently logged into the router and on which line, use the show users EXEC command:
 Router1#show users

Use the keyword all to view all lines, including those that are inactive:
 Router1#show users all

The EXEC command who gives the same output as the show users command:
 Router1#who

To remotely view which users are logged into a router, use the finger command from your management server:
 Freebsd% finger @Router1

This last command works only if the finger service is enabled on the router.

3.6.3 Discussion

The router provides a number of different methods to view active users. The output from all of these commands is
nearly identical. Many administrators like to know which users are accessing the router for security purposes,
operational reasons, or just out of curiosity.

The format of the output is as follows: the absolute line number, the VTY line number, the username, a listing of
connected hosts, the inactivity timer, and the source address of the session. Note that one line of the output has an
asterisk (*) in the left margin, indicating your current session.

The show users command displays the current active users and their associated line information:
 Router1#show users

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.7 Sending Messages to Other Users

3.7.1 Problem

You want to send a message to another user logged into the same router.

3.7.2 Solution

To send a text message to all active users logged into a router, use the send EXEC command. You must have
administrator privileges to use this command:
 Router1#send *

To send a private message to a user logged onto a specific line, use the send command with the line number:
 Router1#send 66

To send a private message to a user on the AUX port:
 Router1#send aux 0

To send a private message to a user on the console port:
 Router1#send console 0

To send a private message to a user on a specific VTY port:
 Router1#send vty 2
3.7.3 Discussion

Sending messages to other users on a router is quite useful. You might want to use this ability to warn other users that
you are about to reload or make changes to the router. This is a particularly valuable feature when remote users are
located in different geographical areas. You can exchange messages with other users immediately without having to
track down individuals via phone, pager, or cell phone.

We often use this feature while troubleshooting network problems. It is particularly useful for communicating with an
onsite technician connected to the router's console, especially if you have no other means to reach them. This is a
great way to coordinate everybody's efforts when there are no telephones near the router, and cell phones won't
work in an electrically noisy equipment room.

To view all of the active users on the router, use the show users EXEC command:
 Router1#show users

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.8 Changing the Number of VTYs

3.8.1 Problem

You want to increase or decrease the number of users who can simultaneously telnet to the router.

3.8.2 Solution

If you want to increase the number of VTY ports available on the router for remote access, you just need to create a
reference to the additional lines in the configuration as follows:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.9 Changing VTY Timeouts

3.9.1 Problem

You want to prevent your Telnet session from timing out.

3.9.2 Solution

To prevent Telnet (or SSH) sessions from timing out, use the following command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.10 Restricting VTY Access by Protocol

3.10.1 Problem

You want to restrict what protocols can be used to access the router's VTY ports.

3.10.2 Solution

To restrict what protocols that you can use to access the router's VTY ports, use the transport input configuration
command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.11 Enabling Absolute Timeouts on VTY Lines

3.11.1 Problem

You want to enable absolute timeouts on your VTY lines.

3.11.2 Solution

To enable absolute VTY timeouts, use the following set of configuration commands:
 Router1# configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.12 Implementing Banners

3.12.1 Problem

You want to implement a banner message to display a security warning.

3.12.2 Solution

The following commands configure various types of banners on a router:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.13 Disabling Banners on a Port

3.13.1 Problem

You want to disable the banner on a particular port to prevent it from confusing an attached device such as a modem.

3.13.2 Solution

To disable banners on particular lines, use the following commands:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.14 Disabling Router Lines

3.14.1 Problem

You want to disable your router's AUX port to help prevent unauthorized access.

3.14.2 Solution

To completely disable access via the router's AUX port, use the following set of commands:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.15 Reserving a VTY Port for Administrative Access

3.15.1 Problem

You want to prevent other people from using up all of your VTY lines, effectively locking you out of the router.

3.15.2 Solution

You can ensure that at least one VTY port is available to you for access at all times with the following commands:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.16 Restricting Inbound Telnet Access

3.16.1 Problem

You want to restrict Telnet access to the router to allow only particular workstations.

3.16.2 Solution

You can restrict which IP addresses can access the router:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.17 Logging Telnet Access

3.17.1 Problem

You want to log every Telnet session to the router.

3.17.2 Solution

To log every Telnet session to the router, use the followings set of commands:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.18 Setting the Source Address for Telnet

3.18.1 Problem

You want to force your router to use a particular IP source address when making outbound Telnet connections.

3.18.2 Solution

To configure a single common IP source address for all outbound Telnet sessions, use the following configuration
command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.19 Automating the Login Sequence

3.19.1 Problem

You want to automate the process of logging into a router, so you don't have to type usernames, passwords, and
common commands.

3.19.2 Solution

The following script automates the process of logging into the router using a scripting language called Expect. Expect
can be used to automate interactive sessions (see Appendix A for more details). This script takes a router name or IP
address as a command-line argument. It then performs an automated login sequence before returning the session
back to you for a normal interactive session.

Here's an example of the output:
 Freebsd% tel Router1

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.20 Using SSH for Secure Access

3.20.1 Problem

You want to use SSH to give more secure encrypted remote access to your router.

3.20.2 Solution

You can configure your router to run an SSH Version 1 server for VTY access:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.21 Changing the Privilege Level of IOS Commands

3.21.1 Problem

You want to change the privilege level of specific IOS commands.

3.21.2 Solution

To reduce the privilege level of an enable command from 15 to 1, use the following command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.22 Defining Per-User Privileges

3.22.1 Problem

You want to set different privilege levels for different users.

3.22.2 Solution

To assign a particular privilege level to a user, use the following set of commands:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 3.23 Defining Per-Port Privileges

3.23.1 Problem

You want to set the privilege level according to which port you use to access the router.

3.23.2 Solution

To configure the privilege level of a particular line, use the following configuration command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 4. TACACS+

Introduction

Recipe 4.1. Authenticating Login IDs from a Central System

Recipe 4.2. Restricting Command Access

Recipe 4.3. Losing Access to the TACACS+ Server

Recipe 4.4. Disabling TACACS+ Authentication on a Particular Line

Recipe 4.5. Capturing User Keystrokes

Recipe 4.6. Logging System Events

Recipe 4.7. Setting the IP Source Address for TACACS+ Messages

Recipe 4.8. Obtaining Free TACACS+ Server Software

Recipe 4.9. Sample Server Configuration Files

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

The Terminal Access Controller Access Control System (TACACS) protocol dates back to an earlier era in
networking when terminal servers were common. The terminal server was also called a Terminal Access Controller
(TAC), so TACACS was the TAC Access Control System.

A company called BBN developed the TACACS protocol in the early 1980s. BBN played a key role in the early
development of the Internet (parts of BBN were subsequently absorbed by companies such as Verizon and Cisco).
The original protocol included only basic functionality to forward login credentials to a central server, and the ability
for the server to respond with a pass or fail based on those credentials.

Cisco implemented several extensions to the original TACACS protocol in 1990, and called the new version
XTACACS (Extended TACACS), which is described in RFC 1492. However, the IETF considers this RFC to be
purely informational, and not an official protocol specification.

More recently, Cisco has replaced both of these earlier versions of TACACS with a newer implementation called
TACACS+. The three different versions are not compatible with one another. In fact, Cisco considers the two earlier
versions to be obsolete and no longer supports them, although they are still included in the IOS for backward
compatibility reasons. This chapter focuses on only the newest TACACS+ version. There is no RFC protocol
specification for TACACS+.

It is important to remember that TACACS+ is a Cisco proprietary standard, unlike the competing Remote
Authentication Dial In User Service (RADIUS) protocol, which is an open standard documented in RFC 2865.
However, Cisco strongly recommends using TACACS+ instead of RADIUS, and we support this recommendation.
Cisco's TACACS+ support is far more mature and robust than RADIUS. Another commonly cited reason for using
TACACS instead of RADIUS is the transport model.

TACACS+ uses a TCP transport on port 49, which makes it more reliable than RADIUS, which uses UDP. RFC
2865 includes a lengthy technical defense of the RADIUS UDP implementation. However, TACACS+ and
RADIUS use different implementation models. TACACS+ prefers to achieve reliable delivery of data between the
client and server, while RADIUS prefers a stateless model that allows it to quickly switch to a backup server.

But there are also more tangible benefits to using TACACS+. The biggest real advantage is that TACACS+ allows
true command authorization. This means that you can create very clear usage policies with TACACS+, where
different users have access to different commands with very fine administrative granularity. TACACS+ can do this
because it separates authentication and authorization functions, while RADIUS can't because it combines them.

Another important advantage is that TACACS+ encrypts the entire payload of the client/server exchange. This is
important in highly secure environments. RADIUS, on the other hand, encrypts only the password, so intercepting
packets can reveal important information.

The strongest point in favor of RADIUS is the fact that it is an open standard implemented by many vendors,

This document is created with the unregistered version of CHM2PDF Pilot

including Cisco. Therefore, if you operate a multivendor network that already includes RADIUS, you may prefer to
use RADIUS with your Cisco routers. This chapter does not specifically cover RADIUS, although many of the
concepts discussed here are equally applicable to both TACACS+ and RADIUS.

TACACS+ is part of Cisco's AAA framework and works with each of these three functions separately:
 Authentication

Identifies users by challenging them to provide a username and password. This information can be encrypted if
required, depending on the underlying protocol.
 Authorization

Provides a method of authorizing commands and services on a per user profile basis.
 Accounting

Accounting functions collect detailed system and command information and store it on a central server where it can
be used for security and quality assurance purposes.

Throughout this chapter, we will discuss some of the most important benefits of using centralized AAA services with
TACACS+. These include the ability to administer login IDs from a central server, as well as centrally defining login
and command authorizations for each user. This allows for easy grouping of users by their administrative functions.
For example, you can give network operators access to one set of commands, web site administrators access to a
different set, and still allow network engineers to have full access. In addition, you can centrally define and modify
these capabilities so that a particular user has similar capabilities on all routers, without having to configure this
separately on each router.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 4.1 Authenticating Login IDs from a Central System

4.1.1 Problem

You want to administer login ID and password information centrally for all routers.

4.1.2 Solution

Cisco changed the AAA syntax slightly in Version 12.0(5)T. The following set of commands allows you to configure
TACACS+ authentication in the older (pre-12.0(5)T) IOS versions:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 4.2 Restricting Command Access

4.2.1 Problem

You want to restrict permissions so that specific users can only use certain commands.

4.2.2 Solution

You can enable TACACS+ command authorization in newer IOS versions with the following set of configuration
commands:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 4.3 Losing Access to the TACACS+ Server

4.3.1 Problem

You want to ensure that your router can still authenticate user sessions, even if it loses access to the TACACS+
server.

4.3.2 Solution

It is important to make sure that you can still enter commands on your router if your TACACS+ server becomes
unreachable for any reason. The following set of commands ensures that you don't lose functionality just because you
lose your server connection:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 4.4 Disabling TACACS+ Authentication on a Particular Line

4.4.1 Problem

You want to disable TACACS+ authentication on your router's console interface.

4.4.2 Solution

You can disable TACACS+ authentication on the router's console port while leaving it active on the rest of the router
lines:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 4.5 Capturing User Keystrokes

4.5.1 Problem

You want to capture and timestamp all keystrokes typed into a router and associate them with a particular user.

4.5.2 Solution

The AAA accounting feature allows you to capture keystrokes and log them on the TACACS+ server:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 4.6 Logging System Events

4.6.1 Problem

You want to log various system events.

4.6.2 Solution

AAA accounting includes the ability to log a variety of system events, including timestamps along with associated
usernames:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 4.7 Setting the IP Source Address for TACACS+ Messages

4.7.1 Problem

You want the router to use a particular source IP address when sending TACACS+ logging messages.

4.7.2 Solution

The ip tacacs source-interface configuration command allows you to specify a particular source IP address for
TACACS logging messages:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 4.8 Obtaining Free TACACS+ Server Software

4.8.1 Problem

You are looking for TACACS+ server software for use in your network.

4.8.2 Solution

Cisco distributes a free TACACS+ software system from their anonymous FTP site on the Internet:
 freebsd% ftp ftp-eng.cisco.com

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 4.9 Sample Server Configuration Files

4.9.1 Problem

You want to configure a TACACS+ server to accept AAA requests from your network devices.

4.9.2 Solution

Here is an example of a TACACS+ server configuration file that accepts AAA requests from network devices to
authenticate users. You can use this example as a template to help you build your own configuration files:
 freebsd% cat tac.conf

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 5. IP Routing

Introduction

Recipe 5.1. Finding an IP Route

Recipe 5.2. Finding Types of IP Routes

Recipe 5.3. Converting Different Mask Formats

Recipe 5.4. Using Static Routing

Recipe 5.5. Floating Static Routes

Recipe 5.6. Using Policy-Based Routing to Route Based on Source Address

Recipe 5.7. Using Policy-Based Routing to Route Based on Application Type

Recipe 5.8. Examining Policy-Based Routing

Recipe 5.9. Changing Administrative Distances

Recipe 5.10. Routing Over Multiple Paths with Equal Costs

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

IP routing works by comparing the destination addresses of IP packets to a list of possible destinations called the
routing table. The destination address in a packet usually identifies a single host. It is also possible to use the multicast
functions of the IP protocol to send packets to many hosts simultaneously, as discussed in Chapter 23. In this
chapter, however, we focus on routing to one specific destination, which is called unicast routing.

In a very large network, such as the public Internet or a large corporate network, it is impractical to keep track of
every individual device. Instead, the IP protocol groups devices together into subnets. A subnet is, in effect, a
summary address representing a group of adjacent hosts. And, similarly, you can summarize adjacent groups of
subnet addresses. The result is an extremely efficient hierarchical addressing system.

There are two different sets of rules for how groups of subnets can be summarized together. The older method uses a
concept called class, while the newer method is classless and is often referred to by the acronym CIDR, for
Classless Inter-Domain Routing. CIDR is described in detail in RFCs 1517, 1518 and 1519. Both methods are still
in common use, although the public Internet makes extensive use of CIDR, and all newly registered IP addressing
follows the new rules.

You can turn on CIDR in Cisco routers with the global configuration command ip classless. Classless routing has
been the default since IOS Version 11.3. If the older rules are required, you have to explicitly disable CIDR with the
no ip classless command.

For small networks, the distinction is often irrelevant, particularly if they don't use a dynamic routing protocol.
However, using a mixture of classful and classless addressing and routing models in a network can cause some
extremely strange and unexpected routing behavior. Because many network administrators are unclear on the
distinctions, a brief review is in order.

The biggest difference between classful and classless addressing is that classful addressing assumes that the first few
bits of the address can tell you how big the network is. Table 5-1 shows how address classes are defined. As you
can see, a Class A address is any network from 0.0.0.0 to 127.0.0.0, and all of these networks are assumed to have
a mask of 255.0.0.0 (/8).

Table 5-1. Classes of IP addresses

Class

Range of network
addresses

Mask

Mask bits

A

0.0.0.0 - 127.0.0.0

255.0.0.0

8

B

128.0.0.0 - 191.255.0.0

255.255.0.0

16

This document is created with the unregistered version of CHM2PDF Pilot

C

192.0.0.0 - 223.255.255.0

255.255.255.0

24

D

224.0.0.1 -
239.255.255.255

255.255.255.255

32

E

240.0.0.1 -
255.255.255.255

255.255.255.255

32

You can create several subnets within a Class A, B, or C network. However, it is harder to work with structures that
are larger than the network. For example, if you wanted to work with the networks 192.168.4.0/24,
192.168.5.0/24, 192.168.6.0/24, and 192.168.7.0/24, CIDR would allow you to address this entire group (called a
supernet) as 192.168.4/22 (or 192.168.4.0 255.255.252.0 in netmask notation). However, with classful routing, the
router would have to maintain routes to all of these ranges as separate Class C networks.

A router decides where to send a packet by comparing the destination address in the header of the IP packet with its
routing table. The rule is that the router must always use the most specific match in the table. This will be the entry
that has the most bits in its netmask, so it is often called the longest match. This longest match rule is required
because the routing table often contains several possible matches for a particular destination.

For example, suppose the destination address in a particular packet is 10.5.15.35. The router will look in its routing
table for possible matches and the accompanying next-hop information that will tell it where to send this packet. If
there is a match for the specific host, 10.5.15.35/32, it doesn't need to look any further. But, it is more likely that the
router will find a more general route, such as 10.5.15.0/24 or 10.5.0.0/16. And, if it can't find any reasonable
matches, there is usually a default route or gateway of last resort, 0.0.0.0/0, that matches anything. If there is no
match at all, the router must drop the packet.

Classless routing can use a mask of any length when looking for the best route to a destination, but classful routing
cannot. For example, CIDR would allow the four networks 192.168.4.0/24, 192.168.5.0/24, 192.168.6.0/24 and
192.168.7.0/24 to be written together as 192.168.4.0/22. But a router using classful routing would not consider the
destination address 192.168.5.15 to be a part of 192.168.4.0/22 because it knows that anything beginning with 192
must be a Class C network. Instead, if there was no specific route for 192.168.5.0/24 or a subnet containing this
destination, the router would skip straight to the default route. If you mix classless and classful routing, this could be
the wrong path, and in the worst case, it could even cause a routing loop.

This is why it is so important to make sure that you are consistent about which type of routing and addressing you
want to use. In general, it is better to use CIDR because of the improved flexibility it offers. Also, since CIDR allows
more levels of route summarization, you can often simplify your routing tables so that they take up less memory in the
routers. This, in turn, can improve network performance.

Summary routes have another important benefit. The router will keep its summary route as long as any of its subnets
exist. This means that the summary route is as stable as the most stable route in the summarized range. Without
summarization, if there is one route that repeatedly flaps up and down, the routing protocol must propagate every
transition throughout the network. But a summary route can hide this instability from the rest of the network. The
routing protocol doesn't need to waste resources installing and removing the flapping route, which improves overall

This document is created with the unregistered version of CHM2PDF Pilot

network stability.

Unregistered Addresses

Most of the IP addresses used in examples in this book are unregistered. The Internet Engineering Task Force
(IETF) and the Internet Assigned Numbers Authority (IANA) have set aside several unregistered ranges of
addresses for anybody to use at any time. The only stipulation is that, because anybody and everybody is using these
numbers, they cannot be allowed to leak onto any public sections of the Internet. The allowed ranges of unregistered
IP addresses are defined in RFC 1918 and summarized in Table 5-2. It is a good practice to address all private
networks using these address ranges.

Table 5-2. RFC 1918 allowed unregistered IP addresses

Class

Network

Mask

Comment

Class A

10.0.0.0

255.0.0.0

One large Class A network

Class B

172.16.0.0 - 172.31.0.0

255.255.0.0

16 Class B networks

Class C

192.168.0.0 -
192.168.255.0

255.255.255.0

256 Class C networks

Note that RFC 3330 defines a number of other special ranges including a special TEST-NET range, 192.0.2.0/24,
which is reserved for documentation purposes. We occasionally use this address range in this book. You should not
use it in production networks, however.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 5.1 Finding an IP Route

5.1.1 Problem

You want to find a particular route in your router's routing tables.

5.1.2 Solution

The EXEC-level command to look at the entire IP routing table is:
 Router>show ip route

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 5.2 Finding Types of IP Routes

5.2.1 Problem

You want to look for a particular type of route in your router's routing tables.

5.2.2 Solution

Often you are more interested in finding all of the directly connected networks, or all of the static routes, rather than a
specific route. This can be done easily by specifying the type of route in the show command:
 Router>show ip route connected

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 5.3 Converting Different Mask Formats

5.3.1 Problem

You want to convert between the three different formats that Cisco routers use to present mask information: standard
netmask, ACL wildcards, and CIDR bit numbers.

5.3.2 Solution

The following Perl script converts from any of these formats to any other. The usage syntax is "mask-cvt {n|w|b}
{n|w|b} {nnn.nnn.nnn.nnn|/bits}", where the first argument specifies what the input format is and the second argument
specifies the output format. In both cases n is for netmask format, w is for wildcard format, and b is for CIDR bit
format (with or without the leading slash, as in /24).

For example:
 $ mask-cvt.pl n w 255.255.248.0

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 5.4 Using Static Routing

5.4.1 Problem

You want to configure a static route.

5.4.2 Solution

You can configure a static route with the ip route command, as follows:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 5.5 Floating Static Routes

5.5.1 Problem

You want to use a static route only when the dynamic route is not available.

5.5.2 Solution

The router will use a floating static route for a particular network prefix only if that same route is not available from
the dynamic routing protocol. You can accomplish this by setting the administrative distance of the static route to a
value greater than the administrative distance of the dynamic routing protocol:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 5.6 Using Policy-Based Routing to Route Based on Source
Address

5.6.1 Problem

You want to use different network links depending on the source address.

5.6.2 Solution

Policy-based routing allows you to configure special routing rules beyond the normal IP routing table. One common
application is to route packets based on the IP source address, rather than (or in addition to) using the destination
address:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 5.7 Using Policy-Based Routing to Route Based on
Application Type

5.7.1 Problem

You want different applications to use different network links.

5.7.2 Solution

This example is similar to the previous one except that, instead of looking at the source address of the incoming IP
packet, it looks at other protocol information such as the TCP or UDP port number. This example redirects HTTP
traffic (TCP port 80) from certain source addresses:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 5.8 Examining Policy-Based Routing

5.8.1 Problem

You want to see information about how policy-based routing has been applied on a router.

5.8.2 Solution

The show ip policy command shows what routing policies have been applied on a router. Here is the output for a
router that has all three of the policies from Recipe 5.7:
 Router>show ip policy

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 5.9 Changing Administrative Distances

5.9.1 Problem

You want to change the administrative distance for an external network.

5.9.2 Solution

Use the distance command to adjust the administrative distance for a particular routing protocol. The precise syntax
depends on the routing protocol. This example uses RIP:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 5.10 Routing Over Multiple Paths with Equal Costs

5.10.1 Problem

You want to restrict how many paths your router can use simultaneously to reach a particular destination.

5.10.2 Solution

By default, the router will install up to four routes to the same destination for most routing protocols, except for BGP
(where the default is one), and static routes (which allow six). You can change this default to any value between one
and six by using the maximum-paths configuration command:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 6. RIP

Introduction

Recipe 6.1. Configuring RIP Version 1

Recipe 6.2. Filtering Routes with RIP

Recipe 6.3. Redistributing Static Routes into RIP

Recipe 6.4. Redistributing Routes Using Route Maps

Recipe 6.5. Creating a Default Route in RIP

Recipe 6.6. Disabling RIP on an Interface

Recipe 6.7. Unicast Updates for RIP

Recipe 6.8. Applying Offsets to Routes

Recipe 6.9. Adjusting Timers

Recipe 6.10. Configuring Interpacket Delay

Recipe 6.11. Enabling Triggered Updates

Recipe 6.12. Increasing the RIP Input Queue

Recipe 6.13. Configuring RIP Version 2

Recipe 6.14. Enabling RIP Authentication

Recipe 6.15. RIP Route Summarization

Recipe 6.16. Route Tagging

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

RIP Version 1 was the Internet's first widely used routing protocol. It was standardized in RFC 1058, although
implementations of the protocol based on de facto standards existed much earlier. It is still useful in small, simple
networks. RIP Version 2 is documented in RFC 1723. All Cisco routers support RIP Version 1. Version 2 support
was integrated into IOS Version 11.1. A detailed discussion of RIP Versions 1 and 2 is beyond the scope of this
book. If you are unfamiliar with dynamic routing protocols in general or with RIP in particular, you can find
theoretical descriptions of how the protocol works in IP Routing (O'Reilly) and Designing Large-Scale LANs
(O'Reilly). We also recommend reading the appropriate RFCs.

RIP is useful in some situations, but you have to remember its limitations. First, it is a purely classful protocol, and
Version 1 doesn't support variable length subnet masks. So you should not use this protocol if you do any complex
subnetting. Second, both Versions 1 and 2 of RIP use the very small metric value of 16 to signify "infinity." The
protocol considers any network that is more than 16 hops away to be unreachable. This is particularly important if
you adjust any metric values to make RIP favor a fast link over a slow one. In practice, it is quite easy to exceed the
maximum metric, even in small networks.

However, RIP can be extremely useful over small parts of a network. For example, it is much easier to configure than
BGP as a method for interconnecting two or more different OSPF or EIGRP Autonomous Systems. And, because
RIP has been around for so long, it is often useful when exchanging routing information with legacy equipment.
Indeed, it is almost impossible to find a router of any age from any vendor that doesn't implement RIP.

In this book, we assume that you are familiar with RIP in general and focus on Cisco's implementation of it. We also
discuss some specific issues that we think are particularly important.

One of the central features of RIP is that it distributes the entire routing table every 30 seconds. The protocol requires
every device to add a small random amount to this time period, but doesn't specify the size of this offset, or whether it
should be positive or negative. Cisco routers always reduce this period slightly by subtracting a random variable
amount of time, up to 4.5 seconds. This helps to prevent the synchronization problems caused by several routers
sending their updates simultaneously, which can in turn cause network loading problems.

If a particular route is not seen for 6 successive update cycles, or 180 seconds by default, the routers will mark it as
invalid. They will then flush the invalid route from their routing tables if they don't see it for 8 cycles, or 240 seconds.
This implies that RIP is slow to converge after a failure, but the network will actually converge much more quickly if it
can take advantage of a protocol feature called triggered updates. This means that when a route's metric suddenly
changes, for whatever reason, a router using triggered updates will not wait for the full update cycle before
distributing information about the change to the other routers in the network.

This is different from the modification to RIP described in Recipe 6.11, which is also called a triggered update. This
feature, which is a partial implementation of RFC 2091, allows the routers to send routing updates only when there
are changes, instead of sending the entire routing table at each update cycle. This makes it possible to configure the
routers to just send incremental changes. Using triggered updates drastically improves RIP performance, but it must
be configured on all of the routers sharing the link. It is often unsupported by legacy equipment, and Cisco routers
support this feature only on point-to-point serial links.

This document is created with the unregistered version of CHM2PDF Pilot

Cisco routers implement a hold-down timer with RIP. This is a protocol feature that is not described in the standard
protocol RFCs. When the router marks a route invalid, it starts the hold-down timer, which is 180 seconds by
default, and ignores all updates for this route. This helps to make the network somewhat more stable.

Because RIP uses a distance vector algorithm rather than a link state protocol (like OSPF), you can use Cisco's
distribute lists to make a router distribute only certain routes. This allows you to prevent distribution of routing
information that you don't want to be generally visible. And you can also reject incoming routing information that you
don't want to use. This can be extremely useful when exchanging routing information between networks, or when
connecting small networks' regions with legacy equipment.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.1 Configuring RIP Version 1

6.1.1 Problem

You want to run RIP on a simple network.

6.1.2 Solution

The following commands show how to configure basic RIP functionality:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.2 Filtering Routes with RIP

6.2.1 Problem

You want to restrict what routing information is exchanged within RIP.

6.2.2 Solution

You can filter inbound RIP routes on a per-interface basis with a distribute list:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.3 Redistributing Static Routes into RIP

6.3.1 Problem

You want RIP to redistribute static routes that you have configured on your router.

6.3.2 Solution

The redistribute static command tells RIP to forward static routes in addition to the directly connected routes and
the routes that have been learned from other RIP routers, which it forwards by default:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.4 Redistributing Routes Using Route Maps

6.4.1 Problem

You want to use route maps for more detailed control over how RIP redistributes routing information from other
sources.

6.4.2 Solution

Route maps give you much better control over how RIP redistributes external routes. This example uses static routes,
but the same principles apply when redistributing routes from other protocols:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.5 Creating a Default Route in RIP

6.5.1 Problem

You want RIP to propagate a default route.

6.5.2 Solution

There are two ways to get RIP to propagate a default route. The preferred method is to use the default-information
originate command as follows:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.6 Disabling RIP on an Interface

6.6.1 Problem

You want to prevent an interface from participating in RIP.

6.6.2 Solution

You can prevent an interface from participating in RIP with the following set of commands:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.7 Unicast Updates for RIP

6.7.1 Problem

You want to exchange routing information with one device on a network, but not with any others.

6.7.2 Solution

You can configure RIP to send its updates to a neighboring router using unicast instead of broadcast or multicast
packets. This is useful in two situations. First, on Non-Broadcast Multiple Access (NBMA) networks, you can't use
the standard broadcast or multicast methods for distributing information because the media doesn't support it. And
second, sometimes you need to exchange routing information with one or more specific devices on a segment, but
you don't trust the rest to give you reliable information. This feature is rarely used, but it can be extremely valuable in
these types of situations:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.8 Applying Offsets to Routes

6.8.1 Problem

You want to modify the routing metrics for routes learned from or distributed into RIP.

6.8.2 Solution

You can modify the RIP metrics for a list of routes learned through a particular interface with the offset-list
configuration command:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.9 Adjusting Timers

6.9.1 Problem

You want to tune your routing protocol performance to decrease the amount of time that the network takes to
converge after a topology change.

6.9.2 Solution

RIP has several timers that control how often it sends updates, how long it takes to remove a bad route, etc. You can
adjust these values with the timers basic configuration command:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.10 Configuring Interpacket Delay

6.10.1 Problem

You want to slow down the rate at which a router sends the packets in a single update to ensure that slower devices
aren't overwhelmed, resulting in a loss of data.

6.10.2 Solution

Use the output-delay configuration command to adjust the interpacket delay of the RIP protocol:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.11 Enabling Triggered Updates

6.11.1 Problem

You want to reduce RIP bandwidth requirements by configuring routers to forward only changes made to the routing
table instead of forwarding the entire routing table.

6.11.2 Solution

The ip rip triggered interface configuration command tells the router to only send those parts of the RIP database
that have changed, instead of the entire database on each RIP update cycle:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.12 Increasing the RIP Input Queue

6.12.1 Problem

You want to increase the size of the RIP input queue to prevent your low-speed router from losing routing
information.

6.12.2 Solution

To increase the size of the shared RIP queue, use the input-queue configuration command:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.13 Configuring RIP Version 2

6.13.1 Problem

You want to use the more flexible features of RIP Version 2.

6.13.2 Solution

By default, Cisco routers will listen for both RIP Version 1 and 2 packets, but they will only send Version 1. If you
want to configure the router to send and receive only Version 2 RIP packets, use the version 2 configuration
command:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.14 Enabling RIP Authentication

6.14.1 Problem

You want to authenticate your RIP traffic to ensure that unauthorized equipment cannot affect how traffic is routed
through your network.

6.14.2 Solution

The following set of commands enables plain-text RIP authentication:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.15 RIP Route Summarization

6.15.1 Problem

You want to decrease the size of your routing tables to improve the stability and efficiency of the routing process.

6.15.2 Solution

You can manually configure address summarization on an individual interface with the ip summary-address rip
configuration command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 6.16 Route Tagging

6.16.1 Problem

You want RIP to include a tag when it distributes specific routes to prevent routing loops when redistributing between
routing protocols.

6.16.2 Solution

RIP Version 2 allows you to tag external routes. For example, a static route configuration looks like this:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 7. EIGRP

Introduction

Recipe 7.1. Configuring EIGRP

Recipe 7.2. Filtering Routes with EIGRP

Recipe 7.3. Redistributing Routes into EIGRP

Recipe 7.4. Redistributing Routes into EIGRP Using Route Maps

Recipe 7.5. Creating a Default Route in EIGRP

Recipe 7.6. Disabling EIGRP on an Interface

Recipe 7.7. EIGRP Route Summarization

Recipe 7.8. Adjusting EIGRP Metrics

Recipe 7.9. Adjusting Timers

Recipe 7.10. Enabling EIGRP Authentication

Recipe 7.11. Logging EIGRP Neighbor State Changes

Recipe 7.12. Limiting EIGRP's Bandwidth Utilization

Recipe 7.13. EIGRP Stub Routing

Recipe 7.14. Route Tagging

Recipe 7.15. Viewing EIGRP Status

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Enhanced Interior Gateway Routing Protocol (EIGRP) is a Cisco proprietary routing protocol. You can only use it in
an all-Cisco network, but EIGRP more than makes up for this deficiency by being easy to configure, fast, and
reliable. A detailed discussion of the protocol's theory and operation is out of the scope of this book. If you are
unfamiliar with EIGRP in general, or need more detail on how the protocol works, we recommend reading the
relevant sections of IP Routing (O'Reilly).

Like RIP, EIGRP is based on a distance vector algorithm that determines the best path to a destination. But EIGRP
uses a more complex metric than RIP's simple hop count. The EIGRP metric is based on the minimum bandwidth
and net delay along each possible path, which means that EIGRP can accommodate larger networks than RIP. It
also means that EIGRP needs a different algorithm for loop removal, because EIGRP can't simply increment the hop
count to infinity to eliminate a loop, as RIP does. EIGRP uses a more sophisticated algorithm called Diffusing Update
Algorithm (DUAL).

The DUAL algorithm ensures that every router can individually make sure that its routing table is always free from
loops. EIGRP also allows the router to take advantage of several different possible paths, if they all have the same
metric. This facilitates load sharing among equal cost links. Further, the EIGRP topology database on each router
keeps track of higher cost candidates for the same destinations. This helps routing tables throughout the network to
reconverge quickly after a topology change such as a link or router failure.

It is the sophisticated DUAL algorithm that distinguishes EIGRP from the earlier Cisco proprietary protocol, called
Interior Gateway Routing Protocol (IGRP). IGRP is rarely used anymore, except for backward compatibility with
older networks. Rather than implementing a new network with IGRP, we recommend using either EIGRP or OSPF.
In fact, Cisco includes many useful features such as automatic two-way redistribution that make the migration from
IGRP to EIGRP relatively straightforward.

EIGRP operates very efficiently over large networks. It achieves this efficiency in part by sending non-periodic
updates. This means that, unlike RIP, EIGRP only distributes information about routes that have changed, and only
when there is a change to report. The rest of the time, routers only exchange small "Hello" packets to verify that
routing peers are still available. So, in a relatively stable network, EIGRP uses very little bandwidth. This is especially
useful in WAN configurations.

It is also extremely efficient over LAN portions of a network. On each network segment, routers exchange routing
information using multicast packets, which helps to limit bandwidth usage on segments that hold many routers. EIGRP
uses multicast address 224.0.0.10, sending packets as raw IP packets using protocol number 88. These multicast
packets are always sent with a TTL value of 1 to ensure that locally relevant routing information doesn't leak off the
local segment and confuse routers elsewhere in the network.

Every router in an EIGRP network includes a topology table, which is a central feature of the DUAL algorithm.
Every time a router receives a new piece of routing information from one of its neighbors, it updates the topology
table. This helps to give it a reliable and up-to-date image of all of the connections in the network that are currently in
use. Every destination subnet known to EIGRP appears in the topology table.

This document is created with the unregistered version of CHM2PDF Pilot

EIGRP includes many of the features such as Classless Inter-Domain Routing (CIDR) and Variable Length Subnet
Masks (VLSM) that are needed in larger networks. But we suspect that this protocol owes most of its popularity to
the fact that it is considerably easier to configure in medium-sized to large networks than other protocols with similar
capabilities (such as OSPF).

Much of this chapter will discuss special features that Cisco has built into this protocol to help improve scalability. A
detailed discussion of design guidelines for building scalable and reliable EIGRP networks is out of the scope of this
book. Please refer to Designing Large-Scale LANs (O'Reilly) for information about efficient EIGRP architectures.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.1 Configuring EIGRP

7.1.1 Problem

You want to run EIGRP on a simple network.

7.1.2 Solution

The following commands configure EIGRP on one router in a simple network:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.2 Filtering Routes with EIGRP

7.2.1 Problem

You want restrict which routes EIGRP propagates through the network.

7.2.2 Solution

You can filter the routes that EIGRP receives on a particular interface (or subinterface) using the distribute-list in
command as follows:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.3 Redistributing Routes into EIGRP

7.3.1 Problem

You want to redistribute routes that were learned by other means into the EIGRP routing process.

7.3.2 Solution

The simplest way to redistribute routes into EIGRP uses the redistribute command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.4 Redistributing Routes into EIGRP Using Route Maps

7.4.1 Problem

You require greater control over the routes that are redistributed and their associated metrics and route tags.

7.4.2 Solution

You can use route maps to do more sophisticated redistribution of routes into EIGRP:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.5 Creating a Default Route in EIGRP

7.5.1 Problem

You want to propagate a default route within EIGRP.

7.5.2 Solution

You can configure EIGRP to propagate a default route by simply redistributing a static route to 0.0.0.0/0, as follows:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.6 Disabling EIGRP on an Interface

7.6.1 Problem

You want to disable an interface from participating in EIGRP.

7.6.2 Solution

You can prevent an interface from participating in EIGRP by simply designating it as passive:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.7 EIGRP Route Summarization

7.7.1 Problem

You want to reduce the size of your routing tables to improve the stability and efficiency of the routing process.

7.7.2 Solution

The ip summary-address eigrp configuration command allows you to configure manual summary addresses on a
per-interface basis:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.8 Adjusting EIGRP Metrics

7.8.1 Problem

You want to modify the routing metrics for routes learned via EIGRP.

7.8.2 Solution

You can use the offset-list configuration command to modify the metrics of routes that EIGRP learns through a
particular interface:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.9 Adjusting Timers

7.9.1 Problem

You wish to tune your EIGRP timers to improve network convergence.

7.9.2 Solution

There are two important EIGRP timers, the hello interval and the hold time. You can adjust both of these timers
separately on each interface on a router as follows:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.10 Enabling EIGRP Authentication

7.10.1 Problem

You want to authenticate your EIGRP traffic to ensure that no unauthorized equipment can affect your routing tables.

7.10.2 Solution

To enable MD5-based EIGRP packet authentication, you must first define a key chain for the encryption, then apply
the authentication commands to the interface:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.11 Logging EIGRP Neighbor State Changes

7.11.1 Problem

You want to log EIGRP neighbor state changes.

7.11.2 Solution

To enable the logging of EIGRP neighbor state changes, use the eigrp log-neighbor-changes configuration
command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.12 Limiting EIGRP's Bandwidth Utilization

7.12.1 Problem

You want to limit the fraction of an interface's bandwidth available to EIGRP for routing updates.

7.12.2 Solution

To modify the fraction of the total bandwidth available to EIGRP, use the ip bandwidth-percent configuration
command:
 Router1# configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.13 EIGRP Stub Routing

7.13.1 Problem

You want to stabilize your network by sending smaller routing tables out to stub branches and reducing the scope of
EIGRP queries.

7.13.2 Solution

To enable stub routing, use the eigrp stub configuration command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.14 Route Tagging

7.14.1 Problem

You want to tag specific routes to prevent routing loops while mutually redistributing routes between two routing
protocols.

7.14.2 Solution

This example shows how to tag external routes in EIGRP:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 7.15 Viewing EIGRP Status

7.15.1 Problem

You want to check the status of EIGRP on the router.

7.15.2 Solution

There are several useful commands for looking at EIGRP status. As we have seen throughout this chapter, the show
ip protocols command displays a wealth of useful information:
 Router1#show ip protocols

You can look at a routing table of only those routes that were learned via EIGRP as follows:
 Router1#show ip route eigrp

Another extremely useful EIGRP command displays a table of all of the adjacent EIGRP routers:
 Router1#show ip eigrp neighbors

You can see information about the interfaces that exchange routing information using EIGRP with this command:
 Router1#show ip eigrp interfaces

Finally, you can view the EIGRP topology database as follows:
 Router1#show ip eigrp topology
7.15.3 Discussion

The precise output of the show ip protocols command varies depending on what features are enabled. However, we
have shown several examples of different output throughout this chapter:
 Router1#show ip protocols

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 8. OSPF

Introduction

Recipe 8.1. Configuring OSPF

Recipe 8.2. Filtering Routes in OSPF

Recipe 8.3. Adjusting OSPF Costs

Recipe 8.4. Creating a Default Route in OSPF

Recipe 8.5. Redistributing Static Routes into OSPF

Recipe 8.6. Redistributing External Routes into OSPF

Recipe 8.7. Manipulating DR Selection

Recipe 8.8. Setting the OSPF RID

Recipe 8.9. Enabling OSPF Authentication

Recipe 8.10. Selecting the Appropriate Area Types

Recipe 8.11. Summarizing Routes in OSPF

Recipe 8.12. Disabling OSPF on Certain Interfaces

Recipe 8.13. OSPF Route Tagging

Recipe 8.14. Logging OSPF Adjacency Changes

Recipe 8.15. Adjusting OSPF Timers

Recipe 8.16. Viewing OSPF Status with Domain Names

Recipe 8.17. Debugging OSPF

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Open Shortest Path First (OSPF) is a popular routing protocol for IP networks for several key reasons. It is
classless, offering full CIDR and VLSM support, it scales well, converges quickly, and guarantees loop free routing.
It also supports address summarization and the tagging of external routes, similar to EIGRP. For networks that
require additional security, you can configure OSPF routers to authenticate with one another to ensure that
unauthorized devices can't affect routing tables.

Perhaps the most important reasons for OSPF's popularity are that it is both an open standard and a mature
protocol. Virtually every vendor of routing hardware and software supports it. This makes it the routing protocol of
choice in multivendor enterprise networks. It is also frequently found in ISP networks for the same reasons.

But, for all of these benefits, OSPF is also considerably more complicated to set up than EIGRP or RIP. Unlike
EIGRP, which can be readily retrofitted into almost any existing network, your network has to be designed with
OSPF in mind if you want it to scale well. For more information on OSPF network design, refer to Designing
Large-Scale LANs (O'Reilly). You can find more information about the protocol itself in IP Routing (O'Reilly). The
remainder of this section is intended only to serve as a reminder to readers who are already familiar with OSPF.

OSPF is currently in its second version, which is documented in RFC 2328. It uses a large, dimensionless metric on
every link (also equivalently called a "cost"), with a maximum value of 65,535. It is important to remember that
OSPF doesn't add these metrics the same way that RIP and EIGRP do. In those protocols, each router updates the
total metric as it passes the route on to the next router. However, in OSPF, the routers distribute the individual link
costs to one another. The maximum cost for an individual link, then, is 65,535, but the RFC does not specify a
maximum total path cost. Any given path through an OSPF network can include many high-cost links, but still be
usable. This is quite different from RIP, for example, where a few high-cost links along a path can make the entire
path unusable.

This 16-bit OSPF per-link metric, while significantly larger than the simple hop-count metric used in RIP, is much
smaller than EIGRP's 32-bit metric. So many of the metric manipulation techniques we discussed for EIGRP in
Chapter 7 do not work in OSPF. The smaller metric sometimes means that you have to exercise care in how you
define the costs of each link. We discuss this issue in more detail in Recipe 8.3.

Like EIGRP, OSPF routers only start to exchange routing information after they have established a neighbor
relationship. However, unlike EIGRP, OSPF routers don't actually exchange routing tables directly. Instead, they
exchange Link State Advertisements (LSAs), which describe the states of different network links. Each router then
obtains an accurate image of the current topology of the network, which it uses to build its routing tables. If you
group the routers into areas, as we will discuss in a moment, every router in each area sees the same LSA
information, which guarantees that all of the routing tables are compatible with one another.

The OSPF protocol operates directly at the IP layer using IP protocol number 89, without an intervening transport
layer protocol such as UDP or TCP. Devices exchange OSPF information using multicast packets that are confined
to the local segment. OSPF actually uses two different multicast IP addresses: all OSPF routers use 224.0.0.5, and
Designated Routers (DRs) use 224.0.0.6.

This document is created with the unregistered version of CHM2PDF Pilot

A DR is basically a master router for a network segment. This is only relevant when there are several OSPF routers
on a multiple access medium, such as an Ethernet segment. In this case, to avoid the scaling problems of establishing
a mesh of neighbor relationships between all of the routers on the segment, one router becomes the DR for the
segment. Then all of the other routers talk to the DR. Each segment also elects a Backup Designated Router (BDR)
in case the DR fails.

One of the most important features of OSPF is the concept of an area. This is also partly what makes OSPF more
difficult to configure. An OSPF network can be broken up into areas that are connected by Area Border Routers
(ABRs). Routing information can then be summarized at the ABR before being passed along to the next area. This
means that routers in one area don't need to worry about the LSA information from routers in other areas, which
drastically improves network stability and convergence times. It also reduces the memory and CPU required to
support OSPF on the routers.

For OSPF to work well, you need to allocate your IP addresses appropriately among the areas. In particular, you
want to be able to summarize the routes for an area when you pass this information along to the next area. The
summarization doesn't need to reduce perfectly to a single route for each area, but the fewer LSAs you need to pass
between areas, the better OSPF will scale.

Each area has a 32-bit identifier number, which is often represented in dotted decimal notation, similar to IP
addresses. Every OSPF network should have an Area 0 (or 0.0.0.0), and every ABR must be a member of Area 0.
This enforces a hierarchical design model for OSPF networks. The one exception to this rule happens in a network
with only one area. In this case you can actually give this area any number, but we don't recommend doing so
because it could cause serious problems if you ever need to partition the network into areas later. The only time this
becomes relevant is when a network failure isolates one area from the rest of the network. In this case, the isolated
area can continue working as normal internally.

You can get around this strict design requirement of having all areas connected only through Area 0 by using OSPF
virtual links. These are essentially little more than IP tunnels. You can use virtual links to ensure that every ABR
connects to Area 0, even if one or more of them are not physically connected to Area 0. However, we should stress
that we do not recommend using virtual links except as a temporary measure—perhaps while migrating your network
to a new architecture or while merging two networks.

The OSPF protocol defines several different LSA types. We will briefly review these different types before
discussing the area types, because it will help you to understand what is going on in these different area types. The
standard LSA types are summarized in Table 8-1.

Table 8-1. LSA types

LSA type

Name

Description

This document is created with the unregistered version of CHM2PDF Pilot

1

Router-LSA

A Router-LSA includes information
about the link states of all of a
router's interfaces. These LSAs are
flooded throughout the area, but not
into adjacent areas.

2

Network-LSA

On NBMA and broadcast-capable
network segments, the DR originates
Network-LSAs. The Network-LSA
describes the routers that are
connected to this broadcast or
NBMA segment. Network-LSAs
are flooded throughout the area, but
not into adjacent areas.

3

Summary-LSA

ABR routers originate
Summary-LSAs to describe
inter-area routes to networks that
are outside of the area but inside of
the AS. They are flooded throughout
an area. Type 3 LSAs are used for
routes to networks.

4

Summary-LSA

Type 4 LSAs are similar to Type 3
LSAs, except that they are used for
routes to ASBR routers.

5

AS-External-LSA

ASBR routers originate Type 5
LSAs to describe routes to
networks that are external to the
AS. Type 5 LSAs are flooded
throughout the AS.

6

MOSPF-LSA

Type 6 LSAs are used for carrying
multicast routing information with
MOSPF. Cisco routers do not
currently support Type 6 LSAs.

This document is created with the unregistered version of CHM2PDF Pilot

7

NSSA-External-LSA

Type 7 LSAs are originated by
ASBRs in an NSSA area. They are
similar to Type 5 LSAs, except that
they are only flooded throughout the
NSSA area. When Type 7 LSAs
reach the ABR, it translates them
into Type 5 LSAs and distributes
them to the rest of the AS.

There are several different types of OSPF areas. They are differentiated by how they summarize information into and
out of the area. The other important difference between area types concerns whether or not they can be used for
transit between other parts of the network. Transit means that the area can allow packets to pass through the area on
their way to another area or another network. Any router that connects OSPF to another network or a different
routing protocol is called an Autonomous System Boundary Router (ASBR). Clearly, to be useful, any area that
includes an ASBR needs to allow transit.

The first important type of area is the backbone area, which is used by Area 0. This area is special because it can
always act as a transit area between other areas, between this OSPF autonomous system and external networks, or
even between external networks.

A regular area connects to the backbone area. Every router in a regular area sees the Type 1 and 2 LSAs for every
other router in the area. They use Type 3 LSAs to learn how to route to destinations in other areas, and Type 4 and
5 LSAs when routing to destinations outside of the OSPF network. All of the other types of areas that we will
describe are modifications of a regular area.

The third area type is called a stub area. Stub areas see detailed routing information on all other areas, but only
summary information about networks outside of the AS. The ABR sends Type 3 LSA packets to summarize this
information. The ABR connecting to a stub area summarizes routes to external networks outside of the AS. All
external routes are reduced to a single summary. This is important because it means that you cannot make
connections to external networks via a stub area. It also means that, if your network is essentially all one big AS
(perhaps with a default route to the Internet), there is no advantage to using a stub area. Stub areas are most useful
when there are many external routes, so summarizing them saves router resources.

In terms of LSA types, the distinguishing factor for a stub area is that the ABR will not send any Type 5 LSAs into
this area.

Fourth is the totally stub area. Totally stub areas, also called "stub no-summary areas," summarize not only external
routes, but also routes from other areas (inter-area routes). Routers in this type of area only see routing information
local to their area, plus a default route pointing to the ABR, from which they can reach all other areas and all other
networks. The ABR accomplishes this by preventing all Type 3, 4, and 5 LSA messages, except for the default
summary route, which it transmits as a single Type 3 LSA message.

As with regular stub areas, you cannot make connections to external networks through totally stub areas using
redistribution into OSPF.

This document is created with the unregistered version of CHM2PDF Pilot

Totally stub areas are clearly useful in WAN situations where the overhead of maintaining and updating a large link
state database is both onerous and unnecessary. The only problem with totally stub areas is that this is essentially a
Cisco invention. Some other vendors have added support for this area type, but it is not universally supported, so
you might have problems implementing it in a multivendor network. But, as long as you use Cisco ABR routers, the
other routers inside of a totally stub area won't know that anything special has happened to their routing information,
so the non-ABR routers can be non-Cisco devices.

Not so stubby areas (NSSA) are defined in RFC 1587. This is a variant of the stub area that is able to connect to
external networks. It accomplishes this by introducing a new LSA type (LSA Type 7) that is used within the area to
carry external routes that originate with ASBRs connected to this area. The ABR summarizes only those external
routes that are received from other areas, and therefore reached through the ABR. External routes from ASBRs
inside the area are not summarized. In order to pass the internally generated external routes to the rest of the
network, the ABR translates these Type 7 LSAs into the more conventional Type 5 LSAs before relaying this
information into Area 0.

The result is that you can use NSSA areas to connect to external networks. This is extremely important to remember,
because even a simple redistributed static route is considered an external route. If you want external routes to be
available for the rest of the network, then NSSA is a good way to handle them. NSSA is an open standard part of
the OSPF protocol, so most of the router vendors who implement OSPF include NSSA support.

Finally, another useful Cisco adaptation is the totally stubby not so stubby area type. This comical sounding name
belies an extremely useful feature. This area type combines the best of NSSA and totally stub areas by summarizing
information from all other areas, but handling external routes like NSSA. It allows you to summarize internal routes
from other areas while still allowing you to put an ASBR inside of the area.

As with the totally stub area, the ABR connecting to a totally stubby NSSA area prevents all Type 3, 4 and 5 LSAs.
And, like an NSSA, it uses Type 7 LSA messages to carry external routes from ASBR routers inside of the area. So
the totally stubby NSSA area can be used as a transit area to an external network, but it can also benefit from
summarization of inter-area routes.

In many networks, the number of external routes is relatively small, while there are many internal (inter-area) routes.
So it is actually much more important to summarize the internal routes in these cases. But the totally stub area type
that allows this inter-area route summarization doesn't allow you to connect to the external networks. The totally
stubby NSSA area type is ideal when you need to connect to an external network through an area that you would
really prefer to keep stubby for performance and scaling reasons.

Another important concept in OSPF involves how it exchanges routing information with external autonomous
systems. OSPF defines two different types of external routes. The only difference between them is in the way that
OSPF calculates their costs. The cost of a Type 1 external route is the sum of the external metric plus the internal
cost to reach the ASBR. The cost of a Type 2 external route is just the external metric cost. OSPF does not add in
the cost to reach the ASBR for Type 2 external routes.

When making routing decisions, OSPF prefers Type 1 to Type 2 external routes. So, for example, you can use Type
1 external routes to ensure that every internal router selects the closest ASBR that connects to a particular external
network. But you might want to also set up a backup ASBR that injects Type 2 routes. The internal routers will then
prefer the Type 1 routes if they are present.

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.1 Configuring OSPF

8.1.1 Problem

You want to run OSPF on a simple network.

8.1.2 Solution

You can enable OSPF on a router by defining an OSPF process and assigning an address range to an area as
follows:
 Router5#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.2 Filtering Routes in OSPF

8.2.1 Problem

You want to apply a filter so that OSPF populates only certain routes into the routing table.

8.2.2 Solution

You can filter inbound routes to prevent the router from putting them in its routing table:
 Router5#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.3 Adjusting OSPF Costs

8.3.1 Problem

You want to change the OSPF link costs.

8.3.2 Solution

The auto-cost reference-bandwidth command allows you to change the reference bandwidth that OSPF uses to
calculate its metrics:
 Router5#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.4 Creating a Default Route in OSPF

8.4.1 Problem

You want to propagate a default route within an OSPF network.

8.4.2 Solution

To propagate a default route with OSPF, use the default-information originate configuration command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.5 Redistributing Static Routes into OSPF

8.5.1 Problem

You want OSPF to propagate one or more static routes.

8.5.2 Solution

To redistribute static routes into an OSPF process, use the redistribute static configuration command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.6 Redistributing External Routes into OSPF

8.6.1 Problem

You want OSPF to distribute routes from another routing protocol.

8.6.2 Solution

The redistribute configuration command allows you to redistribute routes from another dynamic routing protocol into
an OSPF process:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.7 Manipulating DR Selection

8.7.1 Problem

You want to manipulate the Designated Router (DR) selection process on a particular subnet.

8.7.2 Solution

The ip ospf priority configuration command allows you to weight the DR selection process on a network segment.
The following configuration examples are for three different routers that all share the same Ethernet segment. Router5
has the highest OSPF priority, so it will become the DR. Router1 has the second highest priority because we want it
to be the Backup Designated Router (BDR).

Router1 is connected to this network segment through a VLAN trunk:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.8 Setting the OSPF RID

8.8.1 Problem

You want to set the OSPF Router ID (RID) of a particular router.

8.8.2 Solution

There are several ways to set the OSPF RID. The easiest is to create and configure a loopback interface:
 Router5#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.9 Enabling OSPF Authentication

8.9.1 Problem

You want to authenticate your OSPF neighbor relationships to ensure that no unauthorized equipment is allowed to
affect routing.

8.9.2 Solution

To enable OSPF MD5 authentication, you need to define the encryption key, which is essentially just a password on
an interface. You must also enable authentication for the entire area. For the first router, you could do this as follows:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.10 Selecting the Appropriate Area Types

8.10.1 Problem

You want to limit the number of routes and entries in the Link State database to conserve router resources and
ensure good convergence properties.

8.10.2 Solution

In the introduction to this chapter, we talked about the various types of OSPF areas. You can configure these
different types areas using the appropriate keywords on the area command.

For a stubby area, use the stub keyword:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.11 Summarizing Routes in OSPF

8.11.1 Problem

You want to reduce the size of your routing tables without losing any connectivity within your network.

8.11.2 Solution

Using the area x range configuration command on your ABRs allows you to summarize routes between OSPF areas.
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.12 Disabling OSPF on Certain Interfaces

8.12.1 Problem

You want to prevent some of a router's interfaces from taking part in OSPF.

8.12.2 Solution

The passive-interface configuration command effectively disables OSPF on an interface by preventing it from
forming OSPF adjacencies:
 Router3#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.13 OSPF Route Tagging

8.13.1 Problem

You want to tag specific routes to prevent routing loops during mutual redistributing between routing protocols.

8.13.2 Solution

You can tag external routes in OSPF by using the redistribute command with the tag keyword:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.14 Logging OSPF Adjacency Changes

8.14.1 Problem

You want to monitor OSPF adjacency state changes to ensure network stability.

8.14.2 Solution

The log-adjacency-changes configuration command instructs the router to create a log message whenever two
OSPF routers establish or break their adjacency relationship:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.15 Adjusting OSPF Timers

8.15.1 Problem

You want to change the default OSPF timers to improve stability or convergence behavior.

8.15.2 Solution

You can improve the convergence time of OSPF on a particular interface by reducing the hello and dead timers:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.16 Viewing OSPF Status with Domain Names

8.16.1 Problem

You would prefer to view proper domain names in your OSPF show commands rather than the raw IP addresses.

8.16.2 Solution

You can configure OSPF to resolve IP addresses into router names with the following global configuration command:
 Router3#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 8.17 Debugging OSPF

8.17.1 Problem

OSPF is not behaving properly and you want to debug it to isolate and solve the problem.

8.17.2 Solution

There are several OSPF debugging options. The most common symptoms of OSPF problems are instabilities in the
neighbor relationships. So the most useful debugging option traces the formation of adjacencies:
 Router3#debug ip ospf adj

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 9. BGP

Introduction

Recipe 9.1. Configuring BGP

Recipe 9.2. Using eBGP Multihop

Recipe 9.3. Adjusting the Next-Hop Attribute

Recipe 9.4. Connecting to Two ISPs

Recipe 9.5. Connecting to Two ISPs with Redundant Routers

Recipe 9.6. Restricting Networks Advertised to a BGP Peer

Recipe 9.7. Adjusting Local Preference Values

Recipe 9.8. Load Balancing

Recipe 9.9. Removing Private ASNs from the AS Path

Recipe 9.10. Filtering BGP Routes Based on AS Paths

Recipe 9.11. Reducing the Size of the Received Routing Table

Recipe 9.12. Summarizing Outbound Routing Information

Recipe 9.13. Prepending ASNs to the AS Path

Recipe 9.14. Redistributing Routes with BGP

Recipe 9.15. Using Peer Groups

Recipe 9.16. Authenticating BGP Peers

Recipe 9.17. Putting It All Together

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Border Gateway Protocol (BGP) Version 4 is the lifeblood of the Internet. It is responsible for exchanging routing
information between all of the major Internet Service Providers (ISPs), as well between larger client sites and their
respective ISPs. And, in some large enterprise networks, BGP is used to interconnect different geographical or
administrative regions.

Primarily to support the complexity of the public Internet, Cisco has added several clever and useful features to its
BGP implementation. This book is focused on solutions to real-world problems, so we will not try to describe all of
these features. And it would take a whole book to describe how to operate BGP in a large ISP network, so we will
avoid discussing extremely large-scale BGP problems. Instead, we will look at two main classes of BGP problems:
connecting a network to the public Internet, and interconnecting two or more Interior Gateway Protocols (IGP) in a
private network.

A detailed discussion of the BGP protocol and its features is out of the scope of this book. For this type of
information, we recommend referring instead to IP Routing by Ravi Malhotra (O'Reilly), or BGP by Iljitsch van
Beijnum (O'Reilly). However, we will include a brief review of the most critical concepts.

Basic Terminology

BGP is an Exterior Gateway Protocol (EGP), which means that it exchanges routing information between
Autonomous Systems (ASes). This is different from purely IGPs, such as RIP, EIGRP, and OSPF, which we
discussed in Chapter 6, Chapter 7 and Chapter 8, respectively. It also uses a different basic algorithm for building a
loop-free topology than any of those protocols. RIP is a distance vector protocol, OSPF is a link state protocol, and
EIGRP is a distance vector protocol that incorporates many of the advantages of a link state protocol. BGP, on the
other hand, uses a path vector algorithm. This means that instead of reducing each route's relative importance in the
routing table to a single metric or cost value, BGP keeps a list of every AS that the path passes through. It uses this
list to eliminate loops, because a router can check whether a route has already passed through a particular AS by
simply looking at the path.

RFC 1930 describes what the Internet Engineering Task Force (IETF), which is the official Internet standards
organization, considers to be the Best Current Practices (BCPs) for creating and numbering ASes. This document
defines an AS as "a connected group of one or more IP prefixes run by one or more network operators which has a
single and clearly defined routing policy." In practical terms, what appears on the Internet as a single AS may in fact
represent an ISP as well as all their customer networks that aren't using BGP to advertise themselves as unique
administrative domains.

A consistent routing policy in this context means that if a device on the edge of the AS advertises that it can handle
routing for a particular set of prefixes, then all of the routers in the same AS can handle the same prefixes. It doesn't
matter if some of these prefixes refer to internal routes and others refer to external routes. What matters is that the
routers inside the AS must agree with one another on how to handle each route, and which internal or external router
is the best place to send traffic for this particular network. This agreement is what it means for the AS to behave
consistently.

This document is created with the unregistered version of CHM2PDF Pilot

It is important to note that this definition doesn't mean that there has to be one and only one IGP inside of an AS. In
fact, there could be many IGPs, and there could even be no IGP. The interior routing inside of the AS could be
handled entirely by a combination of BGP and static routes, for example.

BGP routers talk to one another over a permanent TCP connection on port 179. When BGP operates between two
routers that are in the same AS, it is called Interior Border Gateway Protocol (iBGP). When the peers are in different
ASes, they use external Border Gateway Protocol (eBGP). Unless you are using one of the more complex features
that were invented specifically to avoid it, all of the BGP routers in an AS must peer with one another in a complete
mesh. This ensures that the AS behaves consistently when advertising routes to other ASes.

Synchronization is a concept that comes up frequently in BGP configurations. Because the AS needs to behave
consistently, if you run an IGP and iBGP, they have to agree. Think of a network where the iBGP peers are several
hops apart, and the intervening network uses an IGP to communicate between them. Synchronization requires that,
for a BGP route to be useable, the IGP must also contain a route to the same prefix. This ensures that one of these
BGP peer routers doesn't try to forward a packet to the other internal BGP peer unless the network connecting them
knows what to do with this packet.

Cisco routers allow you to disable synchronization, which is actually necessary in any case where you don't
redistribute the IGP routes into BGP. Make sure that your network design doesn't require the IGP to have access to
the BGP routes in order to communicate between the iBGP peers if you disable synchronization.

Every discussion of BGP includes frequent references to IP prefixes. A prefix is a Classless Inter-Domain Routing
(CIDR) block of addresses. We previously discussed CIDR in Chapter 5. CIDR is a set of rules for IP subnetting
that allows you to summarize groups of IP addresses. For example, you might have four network segments that use
the IP addresses 172.25.4.0/24, 172.25.5.0/24, 172.25.6.0/24 and 172.25.7.0/24. Each of these network
addresses is a prefix. If, for example, you wanted to send a packet to the device 172.25.5.5/32, your router only
needs to know how to route packets for 172.25.5.0/24. This route prefix includes the specific host address.

But you can go one step further than this. If the paths to all of these IP networks pass through the same router, it is
often useful to summarize or aggregate the prefixes. The router that leads to all of these networks might simply
advertise a single prefix, 172.25.4.0/22, that covers all of the individual networks.

Similarly, CIDR allows you to create supernets that summarize several classful networks. For example, you could
summarize 172.24.0.0/16 through 172.31.0.0/16 as 172.24.0.0/13.

BGP requires that every AS must have a 16-bit Autonomous System Number (ASN). Because it is 16 bits long, the
ASN can have any value between and 65535.

The ASN is a globally unique identification number. BGP uses these ASNs to eliminate loops. Suppose two
networks are using the same ASN. A router in the first AS will send out its routes normally, but the BGP router for
the second network will drop these routes because they already appear to have passed through this AS. So it is
important to ensure that you follow the rules on ASN selection, which are described in RFC 1930.

RFC 1930 originally divided up the range from 1 through 22,527 among the three major international Internet registry
organizations (RIPE, ARIN, and APNIC) to allocate to networks connected to the public Internet. Since publication
of that RFC, however, the IANA has distributed further blocks of numbers, currently extending up to almost ASN

This document is created with the unregistered version of CHM2PDF Pilot

30,000.

Just as RFC 1918 defines private unregistered ranges of IP addresses for networks that don't connect directly to the
public Internet, RFC 1930 defines a series of private unregistered ASN values. You can use these private ASNs
freely as long as they don't leak onto the public Internet. And, just as you can use NAT to hide your private IP
addresses when you connect to the Internet, you can also hide private ASNs, as long as the AS that connects
directly to the public Internet has a registered ASN and registered IP addresses.

All ASN values between 64,512 and 65,534 are designated for private use. This gives 1,023 ASN values that you
can freely use in your internal network without registering, and without fear of conflict. If you use these private ASNs
in an enterprise network, you must ensure that each private ASN is unique throughout the network. Enterprise
networks that are large enough to require multiple ASs are generally managed by several different groups, so it is
critical to coordinate the use of these private ASNs. If there is ever a conflict, with two ASes using the same ASN, it
will disrupt routing to both of the conflicting ASes. And, if either of the conflicting ASes is used for transit, it could
disrupt routing throughout the entire enterprise network, causing routing loops and unreachable networks. Although,
of course, each individual AS will continue to function normally internally.

There are many situations where you can use unregistered ASNs. In fact, the only time a registered ASN is required
is when you need to use BGP to exchange routing information with an ISP. Note that if you only have a single link to
a single ISP, then you really don't require BGP at all. If you have only a single connection to the Internet, then you
can get by with a single default route to the Internet because everything passes through this one link. If the link does
go, there's nothing you can do anyway. So, in this case, running BGP is overkill. A small router with a default route is
more than adequate.

You should consult your ISP to discuss your options. They might also be willing to let you use BGP and a private
ASN, which they will remove when passing your routes to the rest of the world. They may even be willing to let you
run a simpler routing protocol (such as RIPv2) to provide redundancy among two or more links that all use their
network. In any case, your ISP will probably not pass your routes directly to the Internet anyway. It is more likely,
and preferable, that they will allocate addresses to your network from a range that they can summarize. Then the ISP
will just pass a single routing entry to the rest of the Internet to represent many customer networks.

You can also do this kind of AS path filtering internally. If you have several internal ASs, only one of which connects
to the public Internet, then you can register the one directly connected ASN, and simply filter the private ASNs out
of any path information that you pass to your ISPs. We show an example of this kind of filtering in Recipe 9.9.

Another special ASN value that bears mentioning is 65,535, which the IANA reserves for future requirements. RFC
1930, on the other hand, says that this ASN is part of the range that is freely available for unregistered use. We
recommend avoiding this number, because the IANA is the ultimate authority. Although there is currently no conflict
with this number, the IANA may decide to give it some special significance later, which could break existing private
networks that might use it.

Throughout this chapter we will use private ASNs and private IP addresses in examples
that are intended to represent the public Internet. This is purely for demonstration
purposes. You must never allow these private values to reach the public Internet.

This document is created with the unregistered version of CHM2PDF Pilot

BGP Attributes

BGP associates several different basic attributes with each route prefix. These attributes include useful pieces of
information about the route, where it came from, and how to reach it. Well-known attributes must be supported by
every BGP implementation. Some well-known attributes are mandatory. All of the mandatory attributes must be
included with every route entry. A BGP router will generate an error message if it receives a route that is missing one
or more well-known mandatory attributes.

There are also well-known discretionary attributes, which every BGP router must recognize and support, but they
don't have to be present with every route entry. Whenever a router passes along a route that it has learned via BGP
to another BGP peer, it must include all of the well-known attributes that came with this route, including any
discretionary attributes. Of course, the router may need to update some of these attributes before passing them along,
to include itself in the path, for example.

BGP routes can also include one or more optional attributes. These are not necessarily supported by all BGP
implementations. Optional attributes can be either transitive or non-transitive, which is specified by a special flag in
the attribute type field. If a router receives a route with a transitive optional attribute, it will pass this information along
intact to other BGP routers, even if it doesn't understand the option. The router will mark the Partial bit in the
attribute flags to indicate that it was unable to handle this attribute, however.

The router will quietly drop any unrecognized non-transitive optional attributes from the route information without
taking any action.

We will now describe several of the most common BGP attributes.
 ORIGIN (well-known, mandatory)

This attribute can have one of three different values, reflecting how the BGP router that was responsible for
originating the route first learned of it. The possible values are:

0 - IGP: The route came from an IGP interior to the originating AS.

1 - EGP: The route came from an EGP other than BGP.

2 - Incomplete: Any other method.
 AS_PATH (well-known, mandatory)

The AS_PATH is a list of ASNs, showing the path taken to reach the destination network. There are actually two
types of AS_PATHs. An AS_SEQUENCE describes the literal path taken to reach the destination, while an
AS_SET is an unordered list of ASNs along the path. Each time a BGP router passes a route update to an eBGP
peer, it updates the AS_PATH variable to include its own ASN.
 NEXT_HOP (well-known, mandatory)

This attribute carries the IP address of the first BGP router along the path to the destination network. When the
router installs the route for the associated prefix in its routing table, it will use this attribute for the next-hop router.
This is where the router will forward its packets for this destination network.

This document is created with the unregistered version of CHM2PDF Pilot

By default, the NEXT_HOP router will be the router that announced this route to the AS. For routes learned from an
external AS via eBGP, the NEXT_HOP router will be the first router in the neighboring AS. This information is
passed intact throughout the AS using iBGP, so all routers in the AS see the same NEXT_HOP router.
 MULTI_EXIT_DISC (optional, non-transitive)

The Multiple Exit Discriminatory (MED) option is also often called the BGP Metric. Because this 32-bit value is
non-transitive, it is only propagated to adjacent ASes. Routers can use the MED to help differentiate between two or
more equivalent paths between these ASes.
 LOCAL_PREF (well-known, mandatory)

BGP only distributes Local Preference information with routes inside of an AS. Routers can use this number to allow
the network to favor a particular exit point to reach a destination network. This information is not included with eBGP
route updates.
 ATOMIC_AGGREGATE (well-known, discretionary)

When a BGP router aggregates several route prefixes to simplify the routing tables that it passes to its peers, it usually
sets the ATOMIC_AGGREGATE attribute to indicate that some information has been lost. It doesn't set this
attribute, however, in cases where it uses an AS_SET in its AS_PATH to show the ASNs of all of the different
prefixes being summarized.
 AGGREGATOR (optional, transitive)

The AGGREGATOR attribute indicates that a router has summarized a range of prefixes. The router doing the route
aggregation can include this attribute, which will include its own ASN and IP address or router ID.

Both the AGGREGATOR and the ATOMIC_AGGREGATE attributes have become relatively uncommon since the
universal conversion to BGP Version 4.
 COMMUNITY (optional, transitive)

A COMMUNITY is a logical grouping of networks. This attribute is defined in RFC 1997, and RFC 1998
describes a useful application of the concept to ISP networks.
 MP_REACH_NLRI (optional, non-transitive)

This attribute carries information about reachable multiprotocol destinations and next-hop routers. Multiprotocol in
this context could refer to any foreign protocol such as IPv6, although it is most commonly used with IP multicast, as
we discuss in Chapter 23. MultiProtocol Label Switching (MPLS) also uses MBGP for per-VPN routing tables.

Carrying foreign routing information this way ensures backward compatibility. Routers that don't support the
extension can easily interoperate with routers that do.
 MP_UNREACH_NLRI (optional, non-transitive)

The MP_UNREACH_NLRI attribute is similar to the MP_REACH_NLRI, except that it carries information about
unreachable multiprotocol destinations.

BGP has several other optional attributes as well, although we will not discuss them in this book. For more
information, we suggest referring to Internet Routing Architectures (Cisco Press).

Route Selection

Unlike the various interior routing protocols that we discussed in the preceding chapters, BGP doesn't support

This document is created with the unregistered version of CHM2PDF Pilot

multipath routing by default. So, if there are two or more paths to a destination, BGP will go to great extremes to
ensure that only one of them is actually used.

BGP decides which route to use by applying a series of tests in order. It is important to understand these tests and
the order that the router looks at them, particularly when you are trying to influence which routes are used. Otherwise
you might end up wasting a lot of time trying to adjust your routing tables using one method, while the router is
making the actual decision at some earlier step, without ever seeing your adjustments.

Note that at each step, there may be several routes to the same destination prefix that all meet the requirement, or are
equal after a particular test. In that case, BGP will proceed to the next test to attempt to break the tie.

We should point out that these are the route selection rules on Cisco routers. Several of these rules are not part of the
BGP specification. So, for non-Cisco equipment, you should consult the vendor's BGP documentation to see what
the differences are.

1.

The first test is whether the next-hop router is accessible. By default, routers do not update the next-hop
attribute when exchanging routes by iBGP. So it is possible to receive a route whose next-hop router is
actually several hops away, and perhaps unreachable. BGP will not pass these routes to the main routing
table, but it will keep them in its own route database.

2.

If synchronization is enabled, the router will ignore any iBGP routes that are not synchronized.
3.

The third test uses the Cisco proprietary weight parameter, selecting the route with the largest weight. This
parameter is not part of the routing protocol. Adjusting the weight of a particular route on a router will only
affect route selection on this router. It is a purely local concept. The default weight value is zero, except for
locally sourced routes, which get a default weight of 32,768. The maximum possible weight is 65,535.

4.

If the weights are the same, BGP then selects the route with the highest Local Preference value from the
LOCAL_PREF attribute. Routers only include this attribute when communicating within an AS (iBGP). For
external routes, the router that receives a particular route via eBGP sets the Local Preference value. For
internal routes, it is set by the router that introduced the route into BGP. This allows you to force every router
in your AS to preferentially send traffic for a particular destination through a particular eBGP link.

5.

If two or more routes to the same destination network are still equal after comparing Local Preference
values, the router moves on to look at the AS_PATH. This is the path vector that gives BGP its essential
character. It is a set of AS numbers that describes the path to the destination network.

BGP routers prefer routes that originate inside their own ASes.

For routes that originate outside of the AS, BGP will prefer the one with the shortest path (i.e., the one with
the fewest ASNs). This is a simple indication of the most direct path.

6.

BGP then looks at the ORIGIN attribute if the AS path lengths are the same, and selects IGP routes in
preference to EGP, and EGP in preference to INCOMPLETE routes. An INCOMPLETE route is one that
is injected into BGP via redistribution, so BGP isn't able to vouch for its validity.

This document is created with the unregistered version of CHM2PDF Pilot

7.

The next test looks at the MED, and selects the route with the lowest value. The MED is used only if both
routes are received from the same AS, or if the command bgp always-compare-med has been enabled.
With this command enabled, BGP will compare MED values even if they come from different ASes, although
to reach this step the AS_PATHs must have the same length. Note that if you use this command at all, you
should use it throughout the AS or you risk creating routing loops. MED values are only propagated to
adjacent ASes, so routers that are further downstream don't see them at all.

8.

BGP prefers eBGP to iBGP paths. This helps to eliminate loops by ensuring that the route selected is the one
that leads out of the AS most directly. Note that the iBGP routes don't include internal routes that are
sourced from within your AS, because they are selected at step number 5. So this test only looks at routes to
external destinations.

9.

The next test compares the IGP costs of the paths to the next-hop routers, and selects the closest one. This
helps to ensure that faster links and shorter paths are used where possible.

10.

Next, BGP will look at the ages of the routes and use the oldest route to a particular destination. This is an
indication of stability. If two routes are otherwise equivalent, it is best to use the one that appears to be the
most stable.

11.

Finally, if the routes are still equivalent, BGP resorts to the router IDs of the next-hop routers to break any
ties, selecting the next-hop router with the lowest router ID. Since router IDs are unique, this is guaranteed to
eliminate any remaining duplicate route problems.

Note that there are subtle variations to these rules for special situations such as AS confederations, and many
individual rules can be disabled if you want the router to skip them.

Cisco has also implemented a BGP multipath option that changes this route selection process somewhat. If you
enable multiple path support, BGP will still perform the first 7 tests, evaluating everything up to and including the
MED values. But, if two or more routes are still equivalent at this point, the router will install some or all of them
(depending on how you implement this feature). Please refer to Recipe 9.8 for a discussion of this option.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.1 Configuring BGP

9.1.1 Problem

You want to run BGP in a simple network.

9.1.2 Solution

In its simplest configuration, BGP exchanges routes between a router in one AS and another router in a different AS.
The first router is in AS 65500:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.2 Using eBGP Multihop

9.2.1 Problem

You want to use BGP to exchange routes with an external peer router that is more than one hop away. This situation
can arise when the router at the edge of the network doesn't support BGP.

9.2.2 Solution

Cisco provides a useful option called eBGP multihop, which allows you to establish eBGP peer relationships
between routers that are not directly connected to one another:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.3 Adjusting the Next-Hop Attribute

9.3.1 Problem

You want to change the next-hop attribute on routes while distributing them via iBGP so that the routes always point
to a next-hop address that is inside your AS.

9.3.2 Solution

By default, the value of the next-hop attribute for an external route is the IP address of the external BGP router that
announced this route to the AS. You can change this behavior so that the next-hop router is an internal router instead
by using the next-hop-self command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.4 Connecting to Two ISPs

9.4.1 Problem

You want to set up BGP to support two redundant Internet connections.

9.4.2 Solution

The following configuration shows how to make the basic BGP connections, but it has serious problems that we will
show how to fix in other recipes in this chapter:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.5 Connecting to Two ISPs with Redundant Routers

9.5.1 Problem

You want to connect your network to two different ISPs using two routers to eliminate any single points of failure.

9.5.2 Solution

In this example we have two routers in our AS, which has an ASN of 65500. The first router has a link to the first
ISP, whose ASN is 65510:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.6 Restricting Networks Advertised to a BGP Peer

9.6.1 Problem

You want to restrict which routes your router advertises to another AS.

9.6.2 Solution

There are three ways to filter routes in BGP. The first one uses extended access lists and route maps:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.7 Adjusting Local Preference Values

9.7.1 Problem

You want to change the Local Preference values to control which routes you use.

9.7.2 Solution

There are two ways to adjust Local Preference values on a router. The first method changes the Local Preference
values for every route distributed into iBGP from this router:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.8 Load Balancing

9.8.1 Problem

You want to load balance traffic over two or more links, between two eBGP or iBGP neighbors.

9.8.2 Solution

Although BGP goes to great lengths to ensure that there is only one path for each route by default, Cisco routers also
allow you to configure load balancing for equal- cost paths:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.9 Removing Private ASNs from the AS Path

9.9.1 Problem

You want to prevent your internal private ASNs from reaching the public Internet.

9.9.2 Solution

When using unregistered ASNs you have to be careful that they don't propagate into the public Internet.

In this example, the router has a BGP connection to an ISP, which uses ASN 1. Our router uses ASN 2, and
connects to another router with an unregistered ASN, 65500:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.10 Filtering BGP Routes Based on AS Paths

9.10.1 Problem

You want to filter the BGP routes that you either send or receive based on AS Path information.

9.10.2 Solution

You can use AS Path filters either inbound or outbound, to filter either the routes you send or the routes you receive,
respectively. You must apply these filters to each peer separately:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.11 Reducing the Size of the Received Routing Table

9.11.1 Problem

You want to summarize the incoming routing information to reduce the size of your routing table.

9.11.2 Solution

One of the easiest ways to reduce your routing table size is to filter out most of the external routes and replace them
with a default. To do this, first create a static default route pointing to some known remote network. If this remote
network is up, you can safely assume that your ISP is working properly. Then you simply filter out all of the remaining
uninteresting routes:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.12 Summarizing Outbound Routing Information

9.12.1 Problem

You want to summarize your routing table before forwarding it to another router.

9.12.2 Solution

BGP includes an automatic summarization feature that is on by default:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.13 Prepending ASNs to the AS Path

9.13.1 Problem

You want to increase the length of an AS Path so that one inbound path looks better than another.

9.13.2 Solution

In situations where you have multiple connections between ASes, you will often want to make remote networks
prefer one inbound path when sending packets to your network. The easiest way to do this is to prepend your own
ASN to the AS Path several times, instead of just once as it would do by default:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.14 Redistributing Routes with BGP

9.14.1 Problem

You want to redistribute routes between an IGP and BGP.

9.14.2 Solution

When connecting two or more IGPs together using BGP, you sometimes need to configure redistribution between the
IGP and BGP on both routers. To make the example more interesting, we will assume that we need to connect an
EIGRP network to an OSPF network using a pair of BGP routers.

The first router redistributes routes from BGP into OSPF:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.15 Using Peer Groups

9.15.1 Problem

You want to apply the same options to several peers.

9.15.2 Solution

Peer groups allow you to apply the same BGP configuration to a number of neighbors at the same time:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.16 Authenticating BGP Peers

9.16.1 Problem

You want to authenticate your BGP peer relationships to help prevent tampering with your routing tables.

9.16.2 Solution

The BGP protocol includes an MD5-based authentication system for authenticating peers:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 9.17 Putting It All Together

9.17.1 Problem

You want to combine the best elements of this chapter to create a good redundant ISP connection.

9.17.2 Solution

For simplicity, we will extend the single router/dual ISP configuration of Recipe 9.4, rather than using the dual
router/dual ISP example of Recipe 9.5. It should be clear from the discussion in Recipe 9.5 how to extend this
example to the two router case:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 10. Frame Relay

Introduction

Recipe 10.1. Setting Up Frame Relay withPoint-to-Point Subinterfaces

Recipe 10.2. Adjusting LMI Options

Recipe 10.3. Setting Up Frame Relay with Map Statements

Recipe 10.4. Using Multipoint Subinterfaces

Recipe 10.5. Configuring Frame Relay SVCs

Recipe 10.6. Simulating a Frame Relay Cloud

Recipe 10.7. Compressing Frame Relay Data on a Subinterface

Recipe 10.8. Compressing Frame Relay Data with Maps

Recipe 10.9. Viewing Frame Relay Status Information

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Frame Relay is a popular WAN protocol because it makes it easy to construct reliable and inexpensive networks. Its
main advantage over simple point-to-point serial links is the ability to connect one site to many remote sites through a
single physical circuit. Frame Relay uses virtual circuits to connect any physical circuit in a cloud to any other
physical circuit. Many virtual circuits can coexist on a single physical interface.

This section will offer only a quick refresher of how Frame Relay works. If you are unfamiliar with Frame Relay, we
recommend reading the more detailed description of the protocol and its features that are found in T1: A Survival
Guide (O'Reilly).

The Frame Relay standard allows for both Switched (SVC) and Permanent (PVC) Virtual Circuits, although support
for SVCs in Frame Relay switching equipment continues to be relatively rare. Most fixed Frame Relay WANs use
PVCs rather than SVCs. This allows you to configure the routers to look like a set of point-to-point physical
connections. SVCs, on the other hand, provide a mechanism for the network to dynamically make connections
between any two physical circuits as they are needed. In general, SVCs are more complicated to configure and
manage. Most network engineers prefer to use PVCs unless the carrier offers significant cost benefits for using
SVCs. SVCs tend to be most practical when the site-to-site traffic is relatively light and intermittent.

Each virtual circuit is identified by a Data Link Connection Identifier (DLCI), which is simply a number between 0
and 1023. In fact, Cisco routers can only use DLCI numbers in the range 16 through 1007 to carry user data.

If the router at Site A wants to send a packet to Site B, it simply specifies the appropriate DLCI number for the
virtual circuit that connects to Site B in the Frame Relay header. Although a physical circuit can have many virtual
circuits, each connecting to a different remote circuit, there is no ambiguity about where the network should send
each individual packet.

It's important to remember, though, that the DLCI number only has local significance. That is, the DLCI number
doesn't uniquely identify the whole virtual circuit, just the connection from the local physical circuit to the Frame Relay
switch at the Telco central office. The DLCI number associated with this virtual circuit can change several times
before it reaches the remote physical circuit.

We like to use this fact to our advantage when constructing a Frame Relay network. Instead of thinking of the DLCI
number as a virtual circuit identifier, we use it to uniquely label each physical circuit. Suppose, for example, that Site
A has virtual circuits to both Sites B and C. Then we would use the same DLCI number at both Sites B and C to
label the virtual circuits that terminate at Site A. This is just one of many possible DLCI numbering schemes, but we
prefer it because it makes troubleshooting easier. Unfortunately, while this scheme works well in hub-and-spoke
network topologies, it tends to become unworkable in meshed or partially meshed networks.

Frame Relay QoS Features

Frame Relay has several built-in Quality of Service (QoS) features. Each virtual circuit has two important service
level parameters, the Committed Information Rate (CIR) and the Excess Information Rate (EIR). The CIR is the

This document is created with the unregistered version of CHM2PDF Pilot

contracted minimum throughput of a virtual circuit. As long as you send data at a rate that is less than the CIR value,
it should all arrive. The EIR is the available capacity above the CIR. The worst case is when the router is sending
data through a single virtual circuit at the line speed of the physical circuit. The network will generally just drop all
packets that exceed the EIR, so it is customary to have the sum of CIR and EIR for each virtual circuit equal the line
speed of the physical circuit. This makes it physically impossible to exceed the EIR for any PVC.

When the router sends packets faster than the CIR rate that you have contracted with your network provider, the
carrier network may drop some or all of the excess packets if there is congestion in the cloud. To indicate which
packets are in the excess region, the first switch to receive them will often mark the Discard Eligible (DE) bit in their
Frame Relay headers. If there is no congestion, the packet will be delivered normally. But, if the packet goes through
a congested part of the carrier's network, the switches will know that they can drop this packet without violating the
CIR commitments. By just counting the packets that have their DE bit set on the receiving router, you get a useful
measure of how often your network exceeds the CIR on each PVC. Because your traffic patterns will probably not
be symmetrical in most networks, you should monitor the number of DE packets received separately on both ends of
every PVC.

By default, the router will send frames into the cloud without the DE bit set. What happens next is up to the carrier,
but it is common for the first switch to monitor the incoming traffic rate using some variation of the following. During
each sample period (typically a short period of time such as a second), the switch will count the incoming bytes on
each PVC. If there is more data than the CIR for this PVC, the switch will mark the DE bit in all of the excess frames.

However, it is also possible to configure the router to set the DE bit on low priority traffic in the hopes that the
network will drop these low priority packets in preference to the high priority packets. This is something of a gamble,
of course, and its success depends critically on the precise algorithm that your WAN vendor uses for handling
congestion. You should consult with your vendor to understand their traffic shaping and policing mechanisms before
attempting this type of configuration.

There are two other extremely useful flags in the Frame Relay header. These are the Forward Explicit Congestion
Notification (FECN) and the Backward Explicit Congestion Notification (BECN) bits. These simply indicate that the
packet encountered congestion somewhere in the carrier's network. Congestion is most serious when you are
sending at a rate higher than the CIR value; if your carrier marks the DE bit of these excess packets, then congestion
in one of their switches could mean dropped packets.

If a packet encounters congestion in a carrier switch, that switch will often set the FECN flag in the packet's header.
Then, when the other router finally receives this packet, it will know that it was delayed. But this is actually not all that
useful, because the receiving router is not able to directly affect the rate that the sending router forwards packets
along this virtual circuit. So the Frame Relay standard also includes the BECN flag.

When a switch encounters congestion and needs to set the FECN flag on a packet, it looks for another packet
traversing the same PVC in the opposite direction, and marks it with a BECN flag. This way, the sending router
immediately knows that the packets it is sending are encountering congestion.

Note, however, that not all Frame Relay switches implement these features in the same way. So, just because you
don't see any FECN or BECN frames doesn't mean you can safely assume that there is no congestion. Similarly, not
seeing DE frames doesn't necessarily mean that you aren't exceeding the CIR for a PVC. In Recipe 10.6, for
example, we show how to configure a router to act as a Frame Relay switch. But the router does not implement
these congestion notification features at all. The DE counter is also not a meaningful indicator of how often you
exceed CIR if your devices are configured to send low priority frames with the DE bit set.

This document is created with the unregistered version of CHM2PDF Pilot

By default, the router will not react to FECN and BECN markings. Recipe 10.9 shows how you can look at
statistics on FECN and BECN frames to get an idea of the network performance. In the next chapter, Recipe 11.11
shows how to configure a router to automatically adapt to congestion in the carrier network by reading and
responding to the BECN flags, reducing the sending rate until the congestion disappears.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 10.1 Setting Up Frame Relay withPoint-to-Point
Subinterfaces

10.1.1 Problem

You want to configure Frame Relay services so that every PVC is assigned to a separate subinterface.

10.1.2 Solution

Probably the cleanest way to set up a Frame Relay network is to use point-to-point subinterfaces. If you have a host
site that connects to two or more branches through a Frame Relay WAN, you could configure the central host router
like this:
 Central#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 10.2 Adjusting LMI Options

10.2.1 Problem

You want to configure different LMI options on your Frame Relay circuit.

10.2.2 Solution

There are several different LMI options. The first specifies which version of LMI protocol you wish to use:
 Branch1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 10.3 Setting Up Frame Relay with Map Statements

10.3.1 Problem

You want to configure Frame Relay services so that every PVC appears to share the same interface.

10.3.2 Solution

In its simplest form, the Frame Relay map configuration involves considerably less typing than the subinterface version
of the same configuration:
 Central#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 10.4 Using Multipoint Subinterfaces

10.4.1 Problem

You want to configure Frame Relay so that many PVCs share the same subinterface.

10.4.2 Solution

You can connect several virtual circuits to a single subinterface as follows:
 Central#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 10.5 Configuring Frame Relay SVCs

10.5.1 Problem

You want to configure the router to support Frame Relay SVCs.

10.5.2 Solution

Frame Relay SVCs are not extremely common, but some carrier networks support them. The advantage to using
SVCs is that the router can add and remove inactive virtual circuits dynamically in a lightly used network. Because of
the extra complexity and the management problems associated with dynamic network topologies, most network
engineers will only use this feature if it offers significant cost advantages.

You can configure SVCs to use subinterfaces as in Recipe 10.1:
 Central#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 10.6 Simulating a Frame Relay Cloud

10.6.1 Problem

You want to use a router to simulate a Frame Relay cloud in the lab.

10.6.2 Solution

A Cisco router can function as a Frame Relay switch. This is mostly useful when you are trying to simulate a Frame
Relay cloud in a lab to test your router configurations:
 Cloud#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 10.7 Compressing Frame Relay Data on a Subinterface

10.7.1 Problem

You want to configure your router to do Frame Relay compression on a subinterface.

10.7.2 Solution

Cisco offers several different types of compression with Frame Relay. You can opt to compress only the TCP
headers as follows:
 Central#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 10.8 Compressing Frame Relay Data with Maps

10.8.1 Problem

You want to configure your router to do Frame Relay compression with map statements.

10.8.2 Solution

The same Frame Relay compression options that we discussed for subinterfaces are also available with map
statements. You can turn on FRF.9 compression by simply including a few additional keywords in the frame-relay
map statement as follows:
 Central#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 10.9 Viewing Frame Relay Status Information

10.9.1 Problem

You want to check the status of a Frame Relay circuit or VC.

10.9.2 Solution

There are several useful show commands for looking at Frame Relay circuits and virtual circuits. It is usually best to
start at the physical layer and work upward through the protocol layers. You can look at the physical interface with
the show interfaces command:
 Central#show interfaces serial

The show frame-relay pvc command allows you to see information about each of your Frame Relay PVCs:
 Central#show frame-relay pvc

And sometimes it is also useful to look at the LMI status:
 Central#show frame-relay lmi
10.9.3 Discussion

The show interfaces command has a lot of useful information. When the interface is configured for Frame Relay, this
command shows the LMI configuration, whether the interface is configured for SVCs as well as PVCs, and whether
the interface is set up to be DCE or DTE. But the most important thing to look at is always the first line, which shows
the physical and the protocol statuses:
 Central#show interfaces serial

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 11. Queueing and Congestion

Introduction

Recipe 11.1. Fast Switching and CEF

Recipe 11.2. Setting the DSCP or TOS Field

Recipe 11.3. Using Priority Queueing

Recipe 11.4. Using Custom Queueing

Recipe 11.5. Using Custom Queues with Priority Queues

Recipe 11.6. Using Weighted Fair Queueing

Recipe 11.7. Using Class-Based Weighted Fair Queueing

Recipe 11.8. Controlling Congestion with WRED

Recipe 11.9. Using RSVP

Recipe 11.10. Using Generic Traffic Shaping

Recipe 11.11. Using Frame-Relay Traffic Shaping

Recipe 11.12. Using Committed Access Rate

Recipe 11.13. Implementing Standards-BasedPer-Hop Behavior

Recipe 11.14. Viewing Queue Parameters

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Quality of Service (QoS) has been a part of the IP protocol since RFC 791 was released in 1981. However, it has
not been extensively used until recently. The main reason for using QoS in an IP network is to protect sensitive traffic
in congested links. In many cases, the best solution to the problem of congested links is simply to upgrade them. All
you can do with a QoS system is affect which packets are forwarded and which ones are delayed or dropped when
congestion is encountered. This is effective only when the congestion is intermittent. If a link is just consistently over-
utilized, then QoS will at best offer a temporary stopgap measure until the link is upgraded or the network is
redesigned.

There are several different traffic flow characteristics that you can try to control with a QoS system. Some
applications require a certain minimum throughput to operate, while others require a minimum latency. Jitter, which is
the difference in latency between consecutive packets, has to be carefully constrained for many real-time applications
such as voice and video. Some applications do not tolerate dropped packets well. Others contain time-sensitive
information that is better dropped than delayed.

There are essentially three steps to any traffic prioritization scheme. First, you have to know what your traffic patterns
look like. This means you need to understand what traffic is mission critical, what can wait, and what traffic flows are
sensitive to jitter, latency, or have minimum throughput requirements. Once you know this, the second step is to
provide a way to identify the different types of traffic. Usually, in IP QoS you will use this information to tag the Type
of Service (TOS) byte in the IP header. This byte contains a 6-bit field called the Differentiated Services Control
Point (DSCP) in newer literature, and is separated into a 3-bit IP Precedence field and a TOS field (either 3 or 4
bits) in older literature. These fields are used for the same purpose, although there are differences in their precise
meanings. We discuss these fields in more detail in Appendix B.

The third step is to configure the network devices to use this information to affect how the traffic is actually forwarded
through the network. This is the step where you actually have the most freedom, because you can decide precisely
what you want to do with different traffic types. However there are two main philosophies here: TOS-based routing
and DSCP per-hop behavior.

TOS-based routing basically means that the router selects different paths based on the contents of the TOS field in
the IP header. However, the precise TOS behavior is left up to the network engineer, so the TOS values could affect
other things such as queueing behavior. DSCP, on the other hand, generally looks at the same set of bits and uses
them to decide how to handle the queueing when the links are congested. TOS-based routing is the older technique,
and DSCP is newer.

You can easily implement TOS-based routing to select different network paths using Cisco's Policy Based Routing
(PBR). For example, some engineers use this technique of Frame Relay networks to funnel high priority traffic into a
different PVC than lower priority traffic. And many standard IP protocols such as FTP and Telnet have well-defined
default TOS settings.

Most engineers prefer the DSCP approach because it is easier to implement and troubleshoot. If high priority
application packets take a different path than low priority PING packets, as is possible in the TOS approach, it can
be extremely confusing to manage the network. DSCP is also usually easier to implement and less demanding of the

This document is created with the unregistered version of CHM2PDF Pilot

router's CPU and memory resources, as well as being more consistent with the capabilities of modern routing
protocols.

Note that any time you stop a packet to examine it in more detail, you introduce latency and potentially increase the
CPU load on the router. The more fields you examine or change, the greater the impact. For this reason, we want to
stress that the best network designs handle traffic prioritization by marking the packets as early as possible. Then
other routers in the network only need to look at the DSCP field to handle the packet correctly. In general, you want
to keep this marking function at the edges of the network where the traffic load is lowest, rather than in the core
where the routers are too busy forwarding packets to examine and classify packets.

We discuss the IP Precedence, TOS, and DSCP classification schemes in more detail in Appendix B.

Queueing Algorithms

The simplest type of queue transmits packets in the same order that it receives them. This is called a First In First Out
(FIFO) queue. And, although it sounds naively like it treats all traffic streams equally, it actually tends to favor
resource-hungry, ill-behaved applications.

The problem is that if a single application sends a burst that fills a FIFO queue, the router will wind up transmitting
most of the queued packets, but will have to drop incoming packets from other applications. If these other
applications adapt to the decrease in available bandwidth by sending at a slower rate, the ill-behaved application will
greedily take up the slack and could gradually choke off all of the other applications.

Because FIFO queueing allows some data flows to take more than their share of the available bandwidth, it is called
unfair. Fair Queueing (FQ) and Weighted Fair Queueing (WFQ) are two of the simpler algorithms that have been
developed to deal with this problem. Both of these algorithms sort incoming packets into a series of flows.

We discuss Cisco's implementations of different queueing algorithms in Appendix B.

When talking about queueing, it is easy to get wrapped up in relative priorities of data streams. However, it is just as
important to think about how your packets should be dropped when there is congestion. Cisco routers allow you to
even implement a congestion avoidance system called Random Early Detection (RED), which also has a weighted
variant, Weighted Random Early Detection (WRED). These algorithms allow the router to start dropping packets
before there is a serious congestion problem. This forces well-behaved TCP applications to back off and send their
data more slowly, thereby avoiding congestion problems before they start. RED and WRED are also discussed in
Appendix B.

Fast Switching

One of the most important performance limitations on a router depends on how the packets are processed internally.
The worst case is where the router's CPU has to examine every packet to decide how to forward it. Packets that are
handled in the CPU like this are said to use process switching. It is never possible to completely eliminate process
switching in a router, because the router has to react to some types of packets, particularly those containing network
control information. And, as we will discuss in a moment, process switching is often used to bootstrap other more
efficient methods.

This document is created with the unregistered version of CHM2PDF Pilot

For many years, Cisco has included more efficient methods for packet processing in routers. These often involve
offloading the routing decisions to special logic circuits, frequently associated with interface hardware. The actual
details of how these circuits work is often not of much interest to the network engineer. The most important thing is to
ensure that as many packets as possible use these more efficient methods.

Fast switching is one of Cisco's earlier mechanisms for offloading routing from the CPU. In fast switching, the router
uses process switching to forward the first packet to a particular destination. The CPU looks up the appropriate
forwarding information in the routing table and then sends the packet accordingly. Then, when the router sees
subsequent packets for the same destination, it is able to use the same forwarding information. Fast switching records
this forwarding information in an internal cache, and uses it to bypass the laborious route lookup process for all but
the first packet in a flow. It works best when there is a relatively long stream of packets to the same destination. And,
of course, it is necessary to periodically verify that the same forwarding information is still valid. So fast switching
requires the router to process switch some packets just to check that the cached path is still the best path.

To allow for reliable load balancing, the fast switching cache includes only /32 addresses. This means that there is no
network or subnet level summarization in this cache. Whenever the fast switching algorithm receives a packet for a
destination that is not in its cache, or that it can't handle because of a special filtering feature that isn't supported by
fast switching, it must punt. This means that the router passes the packet to a more general routing algorithm, usually
process switching.

Fast switching works only with active traffic flows. A new flow will have a destination that is not in the fast switching
cache. Similarly, low-bandwidth applications that only send one packet at a time, with relatively long periods
between packets, will not benefit from fast switching. In both of these cases, the router must punt, and process switch
the packet. Another more serious example happens in busy Internet routers. These devices have to deal with so
many flows that they are unable to cache them all.

Largely because of this last problem, Cisco developed a more sophisticated system called Cisco Express Forwarding
(CEF) that improves on several of the shortcomings of fast switching. The main improvement is that instead of just
caching active destinations, CEF caches the entire routing table. This increases the amount of memory required, but
the routing information is stored in an efficient, hashed structure.

The router keeps the cached table synchronized with the main routing table that is acquired through a dynamic routing
protocol such as OSPF or BGP. This means that CEF needs to punt a packet only when it requires features that
don't work with CEF. For example, some policy-based routing rules do not work with CEF. So, when you use
these, CEF must still punt and process switch these packets.

In addition to caching the entire routing table, CEF also maintains a table of information about all available next-hop
devices. This allows the router to build the appropriate Layer 2 framing information for packets that need to be
forwarded, without having to consult the system ARP table.

Because CEF rarely needs to punt a packet, even if it is the first packet of a new flow, it is able to operate much
more efficiently than fast switching. And because it caches the entire routing table, it is even able to do
packet-by-packet round-robin load sharing between equal cost paths. CEF shows its greatest advantage over fast
switching in situations where there are many flows, each relatively short in duration. Another key advantage is that
CEF has native support for QoS, while fast switching does not.

This document is created with the unregistered version of CHM2PDF Pilot

A Distributed CEF is available on routers that support Versatile Interface Processor (VIP) cards, such as the 7500
series. This allows each VIP card to run CEF individually to further improve scalability.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.1 Fast Switching and CEF

11.1.1 Problem

You want to use the most efficient mechanism in the router to switch the packets.

11.1.2 Solution

As we discuss in Appendix B, one of the most important things you can do to improve router performance, and
consequently network performance, is to ensure that you are using the best packet switching algorithm. All Cisco
routers support fast switching, and it is enabled by default. However, some types of configurations require that it be
disabled. The following example shows how to turn fast switching back on if it has been disabled:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.2 Setting the DSCP or TOS Field

11.2.1 Problem

You want the router to mark the DSCP or TOS field of an IP packet to affect its priority through the network.

11.2.2 Solution

The solution to this problem depends on the sort of traffic distinctions you want to make, as well the version of IOS
you are running in your routers.

There must be something that defines the different types of traffic that you wish to prioritize. In general, the simpler
the distinctions are to make, the better. This is because all of the tests take router resources and introduce processing
delays. The most common rules for distinguishing between traffic types use the packet's input interface and simple IP
header information such as TCP port numbers. The following examples show how to set an IP Precedence value of
immediate (2) for all FTP control traffic that arrives through the serial0/0 interface, and an IP Precedence of priority
(1) for all FTP data traffic. This distinction is possible because FTP control traffic uses TCP port 21, and FTP data
uses port 20.

The new method for configuring this uses class maps. Cisco first introduced this feature in IOS Version 12.0(5)T.
This method first defines a class-map that specifies how the router will identify this type of traffic. It then defines a
policy-map that actually makes the changes to the packet's TOS field:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.3 Using Priority Queueing

11.3.1 Problem

You want to enable strict priority queues on an interface so that the router always handles high priority packets first.

11.3.2 Solution

To enable Priority Queueing on an interface, you must first define the priority list, and then apply it to the interface:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.4 Using Custom Queueing

11.4.1 Problem

You want to configure custom queueing on an interface to give different traffic streams a share of the bandwidth
according to their IP Precedence levels.

11.4.2 Solution

Implementing Custom Queueing on a router is a two-step procedure. First you must define the traffic types that will
populate your queues. And then you apply the queueing method to an interface:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.5 Using Custom Queues with Priority Queues

11.5.1 Problem

You want to combine Custom Queueing with Priority Queueing on an interface so the highest priority packets are
always handled first, and lower priority traffic streams share bandwidth with one another.

11.5.2 Solution

You can split the queues so that some use Priority Queueing and the remainder use Custom Queueing:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.6 Using Weighted Fair Queueing

11.6.1 Problem

You want your routers to use the TOS/DSCP fields when forwarding packets.

11.6.2 Solution

The simplest way to make your routers use DSCP or TOS information is to just make sure that Weighted Fair
Queueing (WFQ) is enabled:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.7 Using Class-Based Weighted Fair Queueing

11.7.1 Problem

You want to use Class-Based Weighted Fair Queueing on an interface.

11.7.2 Solution

There are three steps to configuring Class-Based Weighted Fair Queueing (CBWFQ) on a router. First, you have to
create one or more class maps that describe the traffic types. Then you create a policy map that tells the router what
to do with these traffic types. Finally you need to attach this policy map to one or more of the router's interfaces:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.8 Controlling Congestion with WRED

11.8.1 Problem

You want to control congestion on an interface before it becomes a problem.

11.8.2 Solution

The syntax for configuring WRED changed with the introduction of class-based QoS. The old method defined
WRED across an entire interface:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.9 Using RSVP

11.9.1 Problem

You want to configure RSVP on your network.

11.9.2 Solution

Basic RSVP configuration is relatively simple. All you need to do is define how much bandwidth can be reserved on
the interface:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.10 Using Generic Traffic Shaping

11.10.1 Problem

You want to perform traffic shaping on an interface.

11.10.2 Solution

Generic traffic shaping works on an entire interface to limit the rate that it sends data. This first version restricts all
outbound traffic to 500,000 bits per second:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.11 Using Frame-Relay Traffic Shaping

11.11.1 Problem

You want to separately control the amount of traffic sent along each of the PVCs in a Frame Relay network.

11.11.2 Solution

This first example shows how to configure Frame Relay traffic shaping using point-to-point frame relay subinterfaces:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.12 Using Committed Access Rate

11.12.1 Problem

You want to use Committed Access Rate (CAR) to control the flow of traffic through an interface.

11.12.2 Solution

CAR provides a useful method for policing the traffic rate through an interface. The main features of CAR are
functionally similar to traffic shaping, but CAR also allows several extremely useful extensions. This first example
shows the simplest application. We have configured CAR here to do basic rate limiting. The interface will transmit
packets at an average rate of 500,000bps, allowing bursts of 4,500 bytes. If there is a burst of longer than 9,000
bytes, the router will drop the excess packets:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.13 Implementing Standards-BasedPer-Hop Behavior

11.13.1 Problem

You want to configure your router to follow the RFC-defined per-hop behaviors defined for different DSCP values.

11.13.2 Solution

This recipe constructs an approximate implementation of both expedited forwarding (EF) and assured forwarding
(AF), while still ensuring that network control packets do not suffer from delays due to application traffic. With the
QoS enhancements provided in IOS Version 12.1(5)T and higher, there is a straightforward way to accomplish this
using a combination of WRED, CBWFQ and Low Latency Queueing (LLQ):
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 11.14 Viewing Queue Parameters

11.14.1 Problem

You want to see how queueing is configured on an interface.

11.14.2 Solution

Cisco provides several useful commands for looking at an interface's queueing configuration and performance. The
first of these is the show queue command:
 Router#show queue FastEthernet0/0

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 12. Tunnels and VPNs

Introduction

Recipe 12.1. Creating a Tunnel

Recipe 12.2. Tunneling Foreign Protocols in IP

Recipe 12.3. Tunneling with Dynamic Routing Protocols

Recipe 12.4. Viewing Tunnel Status

Recipe 12.5. Creating an EncryptedRouter-to-Router VPN

Recipe 12.6. Generating RSA Keys

Recipe 12.7. Creating a Router-to-Router VPN with RSA Keys

Recipe 12.8. Creating a VPN Between a Workstation and a Router

Recipe 12.9. Check IPSec Protocol Status

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

A tunnel is essentially just a method for encapsulating one protocol in another. There are many reasons for doing this.
In Chapter 15 we will discuss DLSw, which is commonly used to transmit SNA traffic through an IP network. The
SNA protocol is not routable, so the tunnel allows you to send this traffic through a scalable routed network.

You can also use tunnels to transmit protocols that are routable, but not fully supported by the network. For
example, some organizations find that they need to be able to send IPX through their networks to support legacy
applications. But few network engineers are willing to invest the extra time or money required to build native IPX
support into their routing core. So this is an ideal situation for using tunnels.

And we often see tunnels for carrying IP traffic through an IP network. The classic example of this is a Virtual Private
Network (VPN) that connects two private networks through a public network such as the Internet. But there are
other places where it can be useful to tunnel IP in IP.

One of the most common reasons for tunneling IP in IP is to get around architectural problems with dynamic routing
protocols. For example, in Chapter 8 we discussed OSPF virtual links. These are effectively just tunnels that let you
put routers in different OSPF areas than their physical connections allow.

Another example appears when you need to extend a routing protocol through regions of the network that don't
support this protocol. Some WAN carriers provide IP connectivity between customer locations, similar to a public
Internet. But the carrier network can't always support the customer's routing protocol and it is often not desirable to
mix the carrier and customer routing tables.

Tunnels are extremely useful in lab or test environments where they allow you to emulate more complex network
topologies. Further, in lab environments it is sometimes necessary to tunnel test data through a production network to
ensure that the testing cannot interfere with the functioning of the production network. We expect to see a lot of
tunneling during the migration phases of any future large scale conversions to IPv6.

Most of the examples in this chapter will look at Generic Routing Encapsulation (GRE) tunnels, sometimes with
encryption support using IPSec. GRE is an open standard documented in RFCs 1701 and 1702, and updated in
RFC 2784. These documents actually describes GRE Version 0, which is the standard version of GRE. There is also
a GRE Version 1, which is more commonly called PPTP (Point-to-Point Tunneling Protocol), and is described in
RFC 2637. The key different between GRE and PPTP is that PPTP includes a PPP intermediate layer, while GRE
directly supports Layer 3 protocols such as IP and IPX. This chapter does not have the space to cover PPTP or its
cousins L2TP (Layer 2 Tunneling Protocol) and L2F (Layer 2 Forwarding). These protocols are commonly used in
situations where mobile users need to make VPN connections through the public Internet to an enterprise IP
network. There are simply too many different variations to adequately cover even the most common configurations.

GRE doesn't use TCP or UDP. Instead, this protocol works directly with the IP layer, using IP Protocol number 47.
It includes its own features for verifying delivery and integrity. The GRE packet's payload includes a complete Layer
3 packet with its payload and headers intact. The routers that terminate the tunnel take packets and wrap them in a
new IP packet with a GRE header. They forward this GRE packet through the IP network to the router that supports

This document is created with the unregistered version of CHM2PDF Pilot

the other end of the tunnel. The receiving router then simply unwraps the encapsulated packet and sends it on its way.
To the encapsulated packet, this entire process has taken a single routing hop, even though the GRE packet may
have traversed many routers to reach its destination.

There are other common tunnel protocols, such as IP-in-IP, which uses IP protocol number 4. This protocol is an
open standard that is documented in RFC 2003. In general we prefer GRE to IP-in-IP because it offers considerably
greater flexibility, particularly on Cisco routers.

Tunnels can have packet fragmentation issues. The problem is simply that when you put a second IP header on an
existing packet, you get a bigger packet. If the original packet is already at or close to the Maximum Transmission
Unit (MTU) packet size that the network can support, putting this packet in a tunnel forces the router to fragment it.
Most of the time this is not a problem, but some applications do not cope well with packet fragmentation.

Normally, applications that can't accept packet fragmentation will set the Don't Fragment (DF) bit in the IP header.
The router must drop oversized packets that it cannot fragment, but it sends an ICMP message back to the end
device to tell it to use a smaller packet size.

The net result is that when you use tunnels, you reduce the effective MTU of your network. This doesn't necessarily
cause problems, but it is important to be aware of the consequences.

Internet Protocol Security (IPSEC) is a suite of security related protocols and algorithms documented in RFCs 2401
through 2412 and RFC 2451. This is far more information than we can even summarize in a book like this, so we
mention only some of the most immediately relevant points. The RFCs or books such as IPSec: Securing VPNs
(RSA Press) are good resources for more information.

The IPSec framework provides features for authenticating and encrypting traffic as well as for securely exchanging
encryption and authentication keys. It is designed to work with both IPv4 and IPv6, and can accommodate a variety
of different basic encryption, authentication, and key exchange algorithms. This algorithmic independence is one of
the essential design criteria of IPSec. It allows you to transparently substitute a new encryption algorithm, for
example, if somebody discovers a critical flaw in the old one, or if a new algorithm is more efficient.

IPSec provides security only at the IP layer. This allows it to protect applications and data operating at higher layers
of the protocol stack. This is important because it means that you can use IPSec in conjunction with other insecure
protocols or applications and, if done properly, achieve a good level of overall security. Also, because IPSec works
at the IP layer, you can readily use it with any of the higher layer IP-based protocols such as TCP, UDP, ICMP,
multicast, and so forth.

Unfortunately, one of the most confusing things about IPSec is the proliferation of different protocols and algorithms
that handle different parts of the key management, authentication, and encryption processes. Therefore, we will
briefly explain some of the more common terms and concepts.

Internet Security Association Key Management Protocol (ISAKMP) is essentially a framework for key exchange, a
generic set of procedures and packet formats that allow devices to reliably and securely pass encryption and
authentication keys to one another. It includes such concepts as the key security association, which defines not only
the keys themselves but important parameters such as the specific algorithms to be used and the length of time that
this key is valid for. This information is all negotiated by the IPSec end devices when they first establish a session, and

This document is created with the unregistered version of CHM2PDF Pilot

periodically updated if the session remains active for a longer period of time.

Internet Key Exchange (IKE) is a specific protocol for securely exchanging keys using the ISAKMP framework. It
uses the OAKLEY key determination protocol, which is defined in RFC 2412. OAKLEY distributes keys of
arbitrary types for arbitrary algorithms to use. One of the methods that it can use is the Diffie-Hellman (DH) key
exchange model.

DH is a mathematical algorithm that uses properties of large prime numbers to allow users to exchange key
information in encrypted form. Both devices authenticating a session can calculate a common key based on the
encrypted information that they exchange. There are two issues with this algorithm.

The first is that it can be broken by a "man in the middle" attack. This essentially involves somebody intercepting the
exchanged key information and rewriting it to create a new valid key with each of the end devices. The various key
management protocols get around this problem by using a separate authentication system to validate the exchanged
information.

The second problem is that even with authentication, if the prime numbers aren't large enough, it is possible to
mathematically deduce the key. To resolve this problem, Cisco routers offer several different DH Groups. Group 1
uses 768-bit values to define the prime numbers, Group 2 uses 1024-bit primes. And, in IOS level 12.1T, Cisco
introduced support for Group 5 DH, which uses a 1536-bit value for its prime numbers. With current computing
power, if somebody really wants your data, 768- bit values are not very secure. So we recommend using Group 2 or
higher.

OAKLEY also supports the Perfect Forward Secrecy (PFS) system. PFS is a system that ensures that even if
somebody is able to break one of the keys, this will tell them nothing about any other keys. This is because the keys
are not derived from one another. Many of the Cisco commands related to key exchange include a pfs keyword that
you can enable, although you need to ensure that the same options are enabled on both peers.

One of the most effective ways of managing large numbers of keys is to implement a Public Key Infrastructure (PKI),
which is a paradigm that uses digital certificates to verify the validity of public encryption and authentication keys.
They generally use a Certification Authority (CA), which is a trusted server that knows the public encryption keys for
a large number of devices.

IPSec uses two important security protocols, the Authenticating Header (AH), and the Encapsulating Security
Payload (ESP). These do pretty much what their names suggest. AH includes a cryptographic authentication scheme
in the header of the IP packet, which allows you to ensure that the data has not been tampered with in any way, and
that it really does come from the right source device. ESP, on the other hand, encrypts the packet's payload for
privacy. We recommend that if you are using IPSec, you should use both AH and ESP together. Authentication and
encryption clearly serve entirely different but complementary functions, but we believe it is rare to have data that is
important enough to warrant implementing either authentication or encryption but not both.

One of the main authentication methods for IPSec makes use of a cryptographic hash function. Hash functions are
actually more common than you might think. The simple Cyclic Redundancy Checksum (CRC) field in a packet is
essentially just a hash function. The general definition of a hash function is an algorithm that takes a message of
arbitrary length and produces an output of fixed length. This output is often called a message digest.

This document is created with the unregistered version of CHM2PDF Pilot

To be useful for authentication, this hash function must make it extremely difficult to generate a two distinct messages
that have the same message digest. There are several of these hash functions in existence. The most popular for use
with IPSec are Message Digest Version 5 (MD5) and Secure Hash Algorithm (SHA). We have already discussed
MD5 in another setting, when we talked about how Cisco routers store passwords internally in Chapter 3.
Cryptographic hash functions make excellent password crypts, because the result is always the same length and
almost impossible to reverse. If the algorithm is strong, the only way to decrypt the original password is to encrypt a
series of systematic guesses and see if any of them match the unknown encrypted string.

The National Institute of Standards and Technology (NIST) developed the SHA as an improvement over MD5. It is
generally believed that SHA is somewhat more secure than MD5, although it is a little bit more CPU intensive.

IPSec uses these hash functions to create Hashed Message Authentication Codes (HMAC). The HMAC is
effectively an irreversible cryptographic hash function of an original message that has been combined in a nontrivial
way with a password. So you need to not only break the hash algorithm, but also the password to reconstruct the
original message.

For the actual data encryption, IPSec again offers several different options. Cisco routers only implement 56-bit and
168-bit Data Encryption Standard (DES) encryption. The 56-bit version of DES is the default, while the 168-bit
version is often called Triple DES, and has export restrictions outside of North America.

People have developed several other encryption algorithms for use with IPSec. One of the most popular is called
Blowfish. This is an unpatented and freely distributable encryption algorithm that is faster than standard DES, and
believed to be more secure as well. Other encryption algorithms include International Data Encryption Algorithm
(IDEA), CAST-256, and Skipjack. However, Cisco implements only DES and Triple DES.

IPSec has two main modes of operation: tunnel mode and transport mode. In this chapter we will discuss examples
of both. Tunnel mode essentially means that IPSec is responsible for operating its own tunnel. IPSec tunnels are
modeled on the IP-in-IP tunnel protocol, which we mentioned earlier. As a result, any IPSec exchanges that use
transport mode must be purely between the two end devices, while tunnel mode can support routing from devices
that are further downstream. In Recipe 12.3, we will show an example where transport mode is used to encrypt
traffic in a GRE tunnel. In this case, the GRE traffic always begins and ends on the routers themselves, although the
payload of the GRE packets may contain IP packets routed from other downstream devices. Recipe 12.6, on the
other hand, shows an example of tunnel mode. In this case, a remote workstation initiates the IPSec connection to
the router. But the packets that this workstation sends are destined for end devices on the other side of the router. So
tunnel mode is appropriate here.

By default, Cisco routers will use IPSec in tunnel mode. This is because IPSec needs a well-defined starting and
ending point for the encryption. So, with transport mode, the source and destination IP addresses must be fixed
somehow. This effectively means that transport mode needs to operate inside of another tunnel protocol such as GRE
if it is to carry user traffic between routers.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 12.1 Creating a Tunnel

12.1.1 Problem

You want to tunnel IP traffic through your network.

12.1.2 Solution

The basic GRE tunnel configuration is simply a matter of defining the source and destination addresses or interfaces
on both devices. On the first router you need to create the tunnel interface, and define its source and destination:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 12.2 Tunneling Foreign Protocols in IP

12.2.1 Problem

You want to tunnel a foreign protocol (such as IPX traffic) through your IP network.

12.2.2 Solution

One of the most important applications of tunnels is for passing foreign protocols through a network that only
supports IP. A typical example of this would be IPX, although the configuration is similar for other protocols such as
AppleTalk:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 12.3 Tunneling with Dynamic Routing Protocols

12.3.1 Problem

You need to pass a dynamic routing protocol through your tunnels.

12.3.2 Solution

Dynamic routing and tunnels can be a dangerous combination. It is critical to ensure that the routers never get
confused and think that the best path to the tunnel destination is through the tunnel itself. We offer three different ways
of resolving this problem.

The first is to use static routes for the tunnel destination address:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 12.4 Viewing Tunnel Status

12.4.1 Problem

You want to check the status of a tunnel.

12.4.2 Solution

You can look at the attributes for a tunnel with the show interface command:
 Router1#show interface Tunnel5

The easiest way to determine if a tunnel is operational is simply to use a ping test to either the send ICMP packets
through the tunnel or to its destination address:
 Router1#ping 192.168.66.6

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 12.5 Creating an EncryptedRouter-to-Router VPN

12.5.1 Problem

You want to create an encrypted VPN through the Internet connecting two routers using pre-shared keys.

12.5.2 Solution

In this example, we show how to use IPSec to encrypt traffic from one router to another through a GRE tunnel. Here
is the configuration of the first router:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 12.6 Generating RSA Keys

12.6.1 Problem

You want to create a shareable RSA key for authentication or encryption.

12.6.2 Solution

First, you must create the keys on both devices. We recommend using at least 1024- bit keys in production networks:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 12.7 Creating a Router-to-Router VPN with RSA Keys

12.7.1 Problem

You want to create an encrypted VPN between two routers using RSA keys.

12.7.2 Solution

As in Recipe 12.3, we will use IPSec transport mode and a GRE tunnel for this encrypted router-to-router
connection:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 12.8 Creating a VPN Between a Workstation and a Router

12.8.1 Problem

You want to make a VPN from a remote workstation to a router.

12.8.2 Solution

There are several steps to configuring a router to accept IPSec VPN connections from remote PCs. The following
discussion doesn't include requirements for the PC's software configuration, just the router's configuration. You
should refer to the software vendor's documentation for information about configuring the workstation software:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 12.9 Check IPSec Protocol Status

12.9.1 Problem

You want to check the status of a VPN.

12.9.2 Solution

There are several useful commands for displaying IPSec parameters.

The command show crypto isakmp sa shows all of the ISAKMP security associations:
 Router1#show crypto isakmp sa

You can look at the IPSec security associations with this command:
 Router1#show crypto ipsec sa

Even if you aren't using a key management protocol such as ISAKMP, you can see information on all of the active
IPSec connections with the following command:
 Router1#show crypto engine connections active

This closely related command will tell you about packet drops within the encryption engine:
 Router1#show crypto engine connections dropped-packet

The show crypto map command gives information about all of the IPSec crypto maps that you have configured on
your router, in use or not:
 Router1#show crypto map

You can specify a particular crypto map with the tag keyword:
 Router1#show crypto map tag TUNNELMAP

For information about dynamic crypto maps, you can use the following command:
 Router1#show crypto dynamic-map
12.9.3 Discussion

The show crypto isakmp sa command lets you see information about the current state of any ISAKMP key
exchanges that the router is involved in:
 Router1#show crypto isakmp sa

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 13. Dial Backup

Introduction

Recipe 13.1. Automating Dial Backup

Recipe 13.2. Using Dialer Interfaces

Recipe 13.3. Using an Async Modem on the AUX Port

Recipe 13.4. Using Backup Interfaces

Recipe 13.5. Using Dialer Watch

Recipe 13.6. Ensuring Proper Disconnection

Recipe 13.7. View Dial Backup Status

Recipe 13.8. Debugging Dial Backup

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Dial backup is an important feature in a reliable WAN design. If the primary link to a remote site fails, dial backup
links can ensure that you don't lose all connectivity. Of course, the dial backup link will usually have significantly
lower bandwidth than the primary link. However, the principle advantage of using a dialup connection for backup is
that the link will only connect when required. The rest of the time the connection is down, which usually saves money,
because you only pay for the access and avoid the connection charges.

The examples in this chapter are also useful for WAN designs in which the dial links are used as the primary
connections. There are two common examples of networks like this. The first are networks that only connect when
there is data to send. For example, in many retail environments, the remote store front sites only need to exchange
data at the end of the day to update inventory and report the day's sales.

The other common type of network that uses only dialup connections involve sites that are in separate buildings, but
within the same local dialing area. In this case, if the telephone company doesn't charge a usage fee, a pure dialup
network can be a very cost-effective way of delivering low bandwidth WAN services.

Three technologies are commonly used for dialup links: standard analog telephone lines with asynchronous modems,
switched 56Kbps synchronous digital service (sometimes called Centrex), and ISDN.

Analog Modems

Standard analog telephone lines with asynchronous modems are a reasonably effective dial backup technology, and
they have the great advantage of being nearly ubiquitous: in regions where you can get no other network services, you
can often get an analog telephone line. Further, most Cisco routers have an AUX port that supports an analog
modem connection.

But this option has some important drawbacks. The first is that there are no guarantees about how much bandwidth
you will get. Many analog modems are rated to speeds up to 56Kbps, but in practice you will rarely get this much
throughput. It is more typical to see a practical bandwidth of between 9.6 and 44Kbps with asynchronous modems.

The second important problem with voice grade telephone lines is that they are susceptible to electrical noise, which
can cause dropped packets and sometimes even dropped calls.

Switched 56Kbps Digital Service

Switched 56Kbps digital service, which also goes by the brand name Centrex in some areas, is a synchronous digital
dialup technology. We recommend using this in regions that don't offer ISDN because it offers greater bandwidth and
reliability than voice grade analog service. However, the number of local telephone companies that can offer switched
56Kbps but not ISDN is rapidly decreasing.

To use this technology, you need a synchronous serial port on your router, and an external Data Unit (DU), or

This document is created with the unregistered version of CHM2PDF Pilot

synchronous modem.

ISDN

ISDN (Integrated Services Digital Network) is usually the best way to go for dialup networking. It has the highest
bandwidth and the greatest reliability. And, when using ISDN with Cisco routers, you have the distinct advantage of
being able to use built-in ISDN terminal adapters and Network Termination Type 1 (NT1) units, which reduces both
the complexity and the costs of implementation and maintenance.

ISDN circuits come in two basic varieties called Basic Rate Interface (BRI) and Primary Rate Interface (PRI). A
BRI circuit supports two 64Kbps B-channels and a 16Kbps D-channel that handles the signaling for the two
B-channels. A PRI circuit, on the other hand, uses a single 64Kbps D-channel to support the signaling for 23 (if
delivered through a T1 circuit) or 30 (for an E1 circuit) B-channels. Many network vendors will also sell PRI services
on fraction T1 or E1 circuits, allowing smaller numbers of B-channels.

The D-channel is not usually used for user data, but Cisco routers allow you to bind the two B-channels together for
a net 128Kbps link using the PPP multilink feature. Unlike analog modems, each of these channels operates at
full-duplex, so you can send and receive simultaneously at the full channel speed.

It is possible to use the D-channel of a PRI circuit for user data, but only if the carrier has not configured this channel
to manage the B-channels. In situations where you have multiple PRI circuits, it is possible to control all of the
B-channels from the D-channel of the first PRI circuit, leaving the D-channels of the other circuits available for data.
The advantages of doing this are slight, however.

Many organizations use BRI interfaces for remote branch devices, and PRI interfaces for central dialup circuits. This
way you can save on physical ports by having many branches dial into a single central PRI circuit. By default, a PRI
circuit can accept calls from remote ISDN circuits. ISDN circuits can also terminate calls from Centrex or switched
56Kbps type circuits without requiring any special hardware. Further, Cisco has analog modem cards for several
routers such as the AS5x00 and 3600 series. These allow you to terminate analog calls from remote devices on the
same PRI circuit. This is an extremely useful option because you can then configure all of your remote devices to dial
to the same central ISDN PRI telephone number.

BRI interfaces come in two main varieties, called "S/T" and "U." Usually a BRI circuit is delivered and terminated on
a U interface, which is a two-wire digital telephone line. The U interface connects to an NT1, which converts the U
interface signaling to S/T interface signaling. The S/T interface then connects to a Terminal Adapter device, which
allows you to connect the ISDN circuit to your equipment. Both S/T and U interfaces use standard RJ-45 cables.

Cisco allows you to eliminate some or all of these pieces of equipment, though, by offering a variety of ISDN
hardware options. Many access routers come with an optional on-board Terminal Adapter, or can take an ISDN
module with this functionality. The BRI interface is labeled "S/T" to indicate when the router has an on-board terminal
adapter. You can connect this port to an external NT1 device, which in turn connects to the telephone company's
circuit.

Cisco also has a variety of BRI modules that include an on-board NT1. These also use an RJ-45 connector, but they
are labeled "U" to indicate that you should connect directly to the ISDN circuit. We generally prefer to implement
ISDN on routers with on-board NT1 units because it simplifies implementation.

This document is created with the unregistered version of CHM2PDF Pilot

If you want to take full advantage of ISDN features, the router must at least have an on-board Terminal Adapter.

Estimating How Many Dialup Lines You Need

Many network engineers make the mistake of either under or overestimating how many dial backup lines they need
to provide at their central site. In a hub-and-spoke WAN, you can easily estimate how many dialup lines you will
need at the central site based on the probability failure for a branch's primary circuit.

The most common failure mode in any WAN is the so-called "last mile" failure, which means that the local loop circuit
between the remote site and the WAN provider's Central Office (CO) breaks for some reason. The break could be
due to a fiber cut, cross-connection problem, or (more common than anybody would like) human error. The provider
will usually keep statistics on these problems, which they will use to define their Service Level Agreement (SLA) for
each type of circuit.

The SLA effectively reflects a probability of a circuit failure. If, for example, your remote sites have a 99.9% SLA,
this means that there is a 0.1% probability of failure. So, if you have a network with N circuits, each of which has the
same probability of failure, P, you can use the following formula to calculate the probability of k simultaneous failures:
 P(k,N) = N! Pk (1-P)(N-k) / (k! (N-k)!)

The symbol "!" is a standard shorthand notation for the factorial function:
 N! = N x (N - 1) x (N-2) x ... x 2 x 1

So, for a WAN SLA of 99.9%, which is on the poor side (but typical), P is 0.1% (100% - 99.9%). If you have a
hub-and-spoke WAN with N=100 circuits, the probability of there being a single circuit down is:
 P(1,100) ~ 0.1 = 10%

So roughly 10% of the time, you can expect to have one circuit down. Similarly, the probabilities of there being two
or more simultaneous failures are given by:
 P(2,100) ~ .5% P(3,100) ~ .02% P(4,100) ~ 0.00038% P(10,100) ~ 1.7 x 10-15%

It's clear from this that the probability of 10 simultaneous failures is very small indeed. But just looking at probabilities
can be deceptive because all of the numbers look small. We recommend multiplying these probabilities by the
number of minutes in a year to get a better idea of how likely these failure scenarios actually are.

The probability of there being a single circuit failure is 10%, or 36.5 days per year. The probability of two
simultaneous failures is 0.5%, which is roughly 44 hours per year. The probability of three simultaneous failure is
.02%, or 105 minutes per year. And the probability of four simultaneous failures is .00038%, which is about two
minutes per year.

So these are all things that you can expect to see happen at least once in the expected several year life span of this
WAN. But the probability of 10 simultaneous failures is so small that you would expect it to happen roughly 5 x
10-10 seconds per year. Looking at this another way, if this failure condition lasted for one second, you would
expect it to happen about once every billion years. Those are odds that most of us could live with.

By doing this sort of analysis, you can tell that having three dial backup circuits would probably come in handy at
least once a year, and you might even need as many as four. But you're not likely to ever need 10.

This document is created with the unregistered version of CHM2PDF Pilot

However, it's important to bear in mind that this analysis assumes that these failures are not correlated. Depending on
how your WAN provider implements your circuits, a single failure could affect several branches. So it is usually a
good idea to apply a safety rule and double the number of circuits that this analysis suggests you will need. In this
case, you probably need 4 circuits—but if you have 8 or 10, you should be more than safe.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 13.1 Automating Dial Backup

13.1.1 Problem

You want automatic dial recovery in case a WAN link fails.

13.1.2 Solution

One of the most reliable ways of implementing dial backup on a Cisco router is to use a floating static default route,
as follows:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 13.2 Using Dialer Interfaces

13.2.1 Problem

You want to treat several physical interfaces as a single dialer.

13.2.2 Solution

If you have several physical interfaces on your router that you want to treat as a single dialer, particularly for PPP
multilink channel bonding, you can create a logical dialer interface:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 13.3 Using an Async Modem on the AUX Port

13.3.1 Problem

You want to connect a standard asynchronous modem to the router's AUX port and use it for dial backup.

13.3.2 Solution

Many Cisco routers include an AUX port that is a low-speed asynchronous serial interface that can connect to a
standard modem and support PPP:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 13.4 Using Backup Interfaces

13.4.1 Problem

You want to configure a router to dial only if it sees a physical failure on the primary WAN interface.

13.4.2 Solution

Cisco routers can watch the physical signals on an interface and trigger a backup interface if the primary fails. The
router will automatically drop the call after the primary circuit comes back up:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 13.5 Using Dialer Watch

13.5.1 Problem

You want to use Cisco's dialer watch feature to trigger dial backup.

13.5.2 Solution

The dialer watch feature allows the router to track a particular destination IP address in its routing table. If all of the
tracked IP addresses disappear from the routing table, the router automatically triggers the dial backup connection:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 13.6 Ensuring Proper Disconnection

13.6.1 Problem

You want to ensure that the dial backup line disconnects properly when the primary link recovers.

13.6.2 Solution

Sometimes funny things happen when the primary link comes back and the backup link has not yet disconnected.
These problems are usually due to poor routing metrics, which can cause at least one of the routers to prefer the dial
path, even if the primary is available. The easiest way to handle these problems is to use bandwidth commands to
ensure that the primary is the better path:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 13.7 View Dial Backup Status

13.7.1 Problem

You want to check on the dialer status of a router.

13.7.2 Solution

Here are some useful commands for looking at the status of a dial backup link. For dial backup that uses the floating
static or dialer watch type configurations, you can use the show dialer command:
 Router1#show dialer

For dial configurations that use the backup interface configuration, you can use the show backup command:
 Router1#show backup

And, for backup configurations that use ISDN, you can get some additional information from the show isdn status,
show isdn active, and show isdn history commands:
 Router1#show isdn status

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 13.8 Debugging Dial Backup

13.8.1 Problem

Your dial backup is not behaving properly and you want to debug it to isolate and resolve the problem.

13.8.2 Solution

The most common reasons for failed dial backup calls are incorrect dial strings and PPP authentication problems.
You can easily diagnose both of these problems with this command:
 Router1#debug ppp authentication

Here is another useful command for diagnosing problems with dialer configurations:
 Router1#debug dialer
13.8.3 Discussion

When you use CHAP authentication with PPP, as we have done throughout this chapter, it is relatively easy to debug
most common problems. We like to use the debug ppp authentication command because it pinpoints the most
frequent problems:
 Jun 28 14:04:05.211: BR0/0:1 PPP: Phase is AUTHENTICATING, by both

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 14. NTP and Time

Introduction

Recipe 14.1. Timestamping Router Logs

Recipe 14.2. Setting the Time

Recipe 14.3. Setting the Time Zone

Recipe 14.4. Adjusting for Daylight Saving Time

Recipe 14.5. Synchronizing the Time on All Routers (NTP)

Recipe 14.6. Configuring NTP Redundancy

Recipe 14.7. Setting the Router as the NTP Master for the Network

Recipe 14.8. Changing NTP Synchronization Periods

Recipe 14.9. Using NTP to Send Periodic Broadcast Time Updates

Recipe 14.10. Using NTP to Send Periodic Multicast Time Updates

Recipe 14.11. Enabling and Disabling NTP Per Interface

Recipe 14.12. NTP Authentication

Recipe 14.13. Limiting the Number of Peers

Recipe 14.14. Restricting Peers

Recipe 14.15. Setting the Clock Period

Recipe 14.16. Checking the NTP Status

Recipe 14.17. Debugging NTP

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Many engineers overlook the importance of accurate timekeeping on a router. It is often extremely useful to be able
to accurately pinpoint when a particular event occurred. You may want to compare network event messages from
various routers on your network for fault isolation, troubleshooting, and security purposes. This is impossible if their
clocks are not set to a common source. In fact, merely setting the clocks to a single common standard is not enough,
because some clocks run a little bit fast and others run a little bit slow. So router clocks need to be continuously
adjusted and synchronized.

Network Time Protocol (NTP) is the de facto standard for Internet time synchronization. The current standard for
NTP is Version 3, which is defined in RFC 1305. The IETF is currently developing a new version.

The protocol allows devices to communicate over UDP port 123 to obtain time from an authoritative time source
such as a radio clock, atomic clock, or GPS-based time source. An NTP server connected directly to one of these
known reliable time sources is called a Stratum 1 timeserver. Stratum 2 timeservers receive their time via NTP from
a Stratum 1 server, and so forth, up to a maximum of Stratum 16. Stratum numbers are analogous to hop counts
from the authoritative time source. NTP generally prefers lower stratum servers to higher stratum servers unless the
lower stratum server's time is significantly different.

The algorithm is able to detect when a time source is likely to be extremely inaccurate, or insane, and to prevent
synchronization in these cases, even if the inaccurate clock is at a lower stratum level. And it will never synchronize a
device to another server that is not synchronized itself.

The NTP protocol is extremely efficient and lightweight. It can synchronize a client device's clock with the server
device's clock to within milliseconds, while exchanging packets as rarely as once every 1024 seconds (roughly 17
minutes). Even over WAN links, NTP is able to synchronize clocks to within tens of milliseconds. To achieve this, it
has algorithms that estimate and reduce the affects of network jitter and latency. It is also able to use multiple time
sources simultaneously for improved reliability and fault tolerance.

As the multiple stratum levels suggest, NTP uses a hierarchical topology. However, this is relevant only to the
relationships between clients and servers, which do not need to be physically adjacent on the network. The protocol
does not require any particular underlying network topology. NTP Version 3 has three different operational modes:
master/slave (server/client), symmetric (peers), and a broadcast mode in which the clients passively listen for updates
from a server. Some implementations also have a multicast mode that most likely foreshadows some of what will be
in Version 4. Cisco has recently added multicast support, which we discuss in Recipe 14.10.

In the master/slave mode, the client device periodically sends a message to one or more servers to request
synchronization. Because the server is closer to the original time source, its clock is assumed to be more reliable. So
the server will synchronize the client's time, but will not allow the client to change its own clock. The server passively
listens for these synchronization requests from clients.

In the symmetric peer-to-peer mode, both NTP devices synchronize one another. Peers can operate in active or
passive mode. However, at least one of a pair of peers must be active or nobody will ever start the conversation.

This document is created with the unregistered version of CHM2PDF Pilot

The broadcast and multicast modes of operation are used to synchronize a large number of passive client devices in a
network. This has the advantage of saving bandwidth caused by multiple requests for synchronization. In most cases,
the overhead caused by every device making separate requests is minimal, however. The broadcast and muliticast
modes have the disadvantage of being less precise than a poll-response model because there is no way for the client
device to estimate network latency. The multicast mode is somewhat more useful than the broadcast mode because it
allows you to synchronize devices on many network segments from a single source. However, multicast routing must
be enabled on the network. We discuss multicast routing in Chapter 23.

The NTP client and server software runs on most modern operating systems including Unix, Windows, and Mac OS.
You can find source code and binary executable NTP software for various operating systems at
http://www.eecis.udel.edu/~ntp/software/index.html. The general information web page for all things related to NTP
and the ongoing protocol and software development is http://www.ntp.org.

Organizations can purchase their own authoritative time sources or obtain time services via the Internet. There are
small, cost-effective GPS Stratum 1 servers on the market today, which you can use as an extremely accurate
reference clock. These devices typically cost a few thousand dollars and can be easily rack-mounted in a computer
room in the core of your network. Alternatively, there are hundreds of public Stratum 1 and 2 timeservers available
on the Internet that allow devices to connect and synchronize with them free of charge. Sending synchronization
signals through the public Internet introduces some additional jitter that is somewhat more difficult to estimate. So this
method is slightly less accurate than using your own timeserver, but the difference is rarely more than a few
milliseconds, and you can reduce the impact of this problem by synchronizing with multiple servers. For most
applications, the publicly available servers are more than adequate.

The web site http://www.eecis.udel.edu/~mills/ntp/servers.htm has useful information about public NTP servers
available through the Internet.

Top

This document is created with the unregistered version of CHM2PDF Pilot

http://www.eecis.udel.edu/~ntp/software/index.html
http://www.ntp.org
http://www.eecis.udel.edu/~mills/ntp/servers.htm

Recipe 14.1 Timestamping Router Logs

14.1.1 Problem

You want the router to record the time along with log and debug messages.

14.1.2 Solution

The service timestamp global configuration command enables timestamps on debug and logging messages. Use the
log keyword to turn on timestamping of log messages:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.2 Setting the Time

14.2.1 Problem

You want to set the clock on the router.

14.2.2 Solution

You can set the internal system clock using the clock set in enable mode:
 Router#clock set 14:27:22 March 9 2003

Some high-end routers, such as the 4500 series, 7000 series, 7200 series, and 7500 series, have a battery-protected
calendar function that continues to keep time even if the router is temporarily powered off. You can set this calendar
function using the calendar set command in enable mode:
 Router#calendar set 14:34:39 March 9 2003

In both cases, the router will accept either "hh:mm:ss day month year" or "hh:mm:ss month day year" notation.

14.2.3 Discussion

Every Cisco router has an internal system clock. When the router boots, the internal system clock starts to maintain
the current date and time. If there is no battery-protected calendar in the router, the clock will start with a default
initial value of Monday March 1, 1993 at midnight. If you want accurate time, you need to set it manually as
described earlier, or use the automated method given in Recipe 14.5.

As we said, most high-end routers have an internal battery-powered clock called a calendar. Router calendars are
able to maintain accurate time and date information, even during power interruptions. When the router initializes, it
automatically synchronizes the internal system clock with the date stored with the calendar.

You can view the current calendar time using the following command:
 Router>show calendar

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.3 Setting the Time Zone

14.3.1 Problem

You want to change the time zone on the router.

14.3.2 Solution

To configure the router's local time zone, use the following configuration command:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.4 Adjusting for Daylight Saving Time

14.4.1 Problem

You want the router to automatically adjust to Daylight Saving Time.

14.4.2 Solution

Some areas, such as most of North America and Europe, have consistent and common rules for when to switch
between winter or Standard time and summer or Daylight Saving Time. The North American rule, for those areas
that observe Daylight Saving Time, is to move an hour ahead at 2:00 A.M. on the first Sunday in April, and back an
hour at 2:00 A.M. on the last Sunday in October. This is the default for Cisco routers that have been configured for
summer time:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.5 Synchronizing the Time on All Routers (NTP)

14.5.1 Problem

You want your routers to automatically learn the time and synchronize their clocks through the network.

14.5.2 Solution

Network Time Protocol (NTP) is an open standard protocol for time synchronization. You can implement NTP on a
router to provide automatic and efficient time synchronization. To enable a basic NTP configuration, enter the
following commands:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.6 Configuring NTP Redundancy

14.6.1 Problem

You want to configure more than one NTP server for redundancy.

14.6.2 Solution

You can improve NTP reliability by configuring several redundant servers. The reliability is better still if the router
uses different paths to reach these servers:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.7 Setting the Router as the NTP Master for the Network

14.7.1 Problem

You want to use the router as an NTP server to act as the primary time source for the network.

14.7.2 Solution

There is no need for a dedicated NTP server; you can pick one or two routers to act as authoritative NTP servers
for the whole network. (The router should have a calendar function.)
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.8 Changing NTP Synchronization Periods

14.8.1 Problem

You want to adjust how often routers send NTP packets to verify clock synchronization.

14.8.2 Solution

You cannot manually change NTP's polling rates. The protocol has an adaptive algorithm that automatically adjusts
the polling interval.

14.8.3 Discussion

NTP is an extremely efficient protocol that actively monitors all aspects of network timing to adjust its configuration
accordingly. Upon initialization of NTP, a router sets its cycle to poll about once every 64 seconds. As the local
clock becomes synchronized and stable, the router will adaptively back off the poll cycle to a maximum of 1024
seconds (roughly 17 minutes):
 Router>show ntp associations

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.9 Using NTP to Send Periodic Broadcast Time Updates

14.9.1 Problem

You want to set up your router to use the NTP broadcast mode so that devices do not need to query periodically for
the time.

14.9.2 Solution

Use the NTP broadcast interface configuration command to enable NTP server broadcast:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.10 Using NTP to Send Periodic Multicast Time Updates

14.10.1 Problem

You want to set up your router to use the NTP multicast mode so that devices do not need to query periodically for
the time.

14.10.2 Solution

Use the ntp multicast interface command to allow the router to send NTP multicast packets:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.11 Enabling and Disabling NTP Per Interface

14.11.1 Problem

You want to control NTP services on a per-interface basis.

14.11.2 Solution

Depending on the level of access control required, you can use the ntp disable command to prevent the router from
providing NTP services on a particular interface:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.12 NTP Authentication

14.12.1 Problem

You want to authenticate your NTP packets.

14.12.2 Solution

Use the ntp authentication command to authenticate NTP traffic between associations. To configure an
NTP-enabled router to require authentication when other devices connect to it, use the following commands:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.13 Limiting the Number of Peers

14.13.1 Problem

You want to limit the number of NTP peers that the router will accept.

14.13.2 Solution

Use the ntp max-associations configuration command to limit the number of NTP associations the router will accept:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.14 Restricting Peers

14.14.1 Problem

You want to restrict your router's NTP services.

14.14.2 Solution

You can use the ntp access-group command to restrict which devices you want your router to allow NTP
associations with:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.15 Setting the Clock Period

14.15.1 Problem

You want to improve on the default value in the ntp clock-period xxxxxx command that automatically appears
when you configure NTP on your router.

14.15.2 Solution

The router will automatically generate an ntp clock-period line that it uses to help speed resynchronization after a
reboot. Leave it alone:
 Router#show running-config | include clock-period

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.16 Checking the NTP Status

14.16.1 Problem

You want to verify the status of NTP on your router to make sure it's running properly.

14.16.2 Solution

Use the NTP and clock show commands to verify the status of NTP on your router. The best place to start is the
show clock detail command, which provides information on the current time, time source, and time zone
configuration:
 Router>show clock detail

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 14.17 Debugging NTP

14.17.1 Problem

You want to debug and isolate NTP problems.

14.17.2 Solution

Use the show ntp association command to view the status of the configured NTP associations:
 Router>show ntp associations

Use the ping command to ensure connectivity to the NTP server exists:
 Router>ping 172.25.1.1

Use the debug ntp packet command to view the NTP packets being generated by the router:
 Router#debug ntp packets

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 15. DLSw

Introduction

Recipe 15.1. Configuring DLSw

Recipe 15.2. Using DLSw to Bridge Between Ethernet and Token Ring

Recipe 15.3. Converting Ethernet and Token Ring MAC Addresses

Recipe 15.4. Configuring SDLC

Recipe 15.5. Configuring SDLC for Multidrop Connections

Recipe 15.6. Using STUN

Recipe 15.7. Using BSTUN

Recipe 15.8. Controlling DLSw Packet Fragmentation

Recipe 15.9. Tagging DLSw Packets for QoS

Recipe 15.10. Supporting SNA Priorities

Recipe 15.11. DLSw+ Redundancy and Fault Tolerance

Recipe 15.12. Viewing DLSw Status Information

Recipe 15.13. Viewing SDLC Status Information

Recipe 15.14. Debugging DSLw

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

There are essentially two kinds of bridges. The first type is a Source Route Bridge (SRB), which allows end devices
to request a particular path through the network using a Routing Information Field (RIF) in the packet. In the default
case, this type of bridge cannot forward any packet without a RIF. The second type is a Transparent Bridge, which
hides all of that network detail from end devices. Transparent Bridges have no concept of a RIF. SRBs are
commonly used with Token Ring networks, while Transparent Bridging is popular with Ethernets, where it is used by
Ethernet switches.

Bridging between Ethernet and Token Ring networks requires a special hybrid of these two that is able to translate
between not only the media types, but also the bridging types. The Remote Source Route Bridging (RSRB) and
Source Route Transparent (SRT) bridging protocols were invented to solve this problem, particularly over WANs.

Data Link Switching (DLSw) and DLSw+, which is Cisco's enhanced version of DLSw, also solve these problems
and comply with the same bridging standards. These protocols are capable of connecting Token Rings to Ethernets,
Synchronous Data Link Control (SDLC) serial connections, and even X.25 networks. So there is really very little
reason to worry about the older bridging protocols and methods anymore. If you are considering building a new
network involving the System Network Architecture (SNA) protocol, there is no particular reason to bother with
either SRB or RSRB. If you have an existing network involving these protocols, it would be wise to consider moving
to the more modern and flexible DLSw or DLSw+.

Because DLSw creates bridges that are able to connect different (or similar) Layer 2 media together, it clearly has
many applications beyond SNA, although that is the most common reason for deploying DLSw. It can also be used
when bridging LAN segments for other non-routable protocols such as NetBIOS and Local Area Transport (LAT).
And it can be used in conjunction with routing on the same interfaces so that some protocols are routed and others
are bridged.

DLSw is an open standard protocol for bridging through TCP/IP networks. It was originally developed by IBM as a
proprietary standard in 1992 and became an open standard with the publication of RFC 1434 the following year.
Version 1 of the DLSw protocol was defined in detail in 1995 in RFC 1795, and updated to create Version 2 in
1997 in RFC 2166. This set of updates does not affect the underlying protocol, but rather extends its functionality.
Meanwhile, Cisco independently implemented a distinct set of extensions to DLSw Version 1 and called the result
DLSw+.

There are currently three different common versions of the protocol with different capabilities supported by different
vendors: Version 1, Version 2, and DLSw+. Fortunately, all versions include a capabilities field that is used when
two devices first attempt to make a DLSw connection. This allows them to agree on a set of common features. In
most cases this results in good transparency of operation among different vendors. However, it is useful to be aware
of what features will not be supported when interconnecting in this way.

Most of the DLSw+ enhancements allow for greater scalability and variety of transport mechanisms. For example,
DLSw+ allows the transport mechanism to be Fast-Sequenced Transport (FST), Frame Relay, or High-Level Data
Link Control (HDLC) protocols (as well as TCP/IP). This book covers only the TCP/IP version, however. Other
DLSw+ enhancements, such as peer groups and border peers, improve scalability and allow you to build a large

This document is created with the unregistered version of CHM2PDF Pilot

bridged network out of smaller groups of devices that pass limited amounts of information between them as required.

Service Access Points (SAP and LSAP)

The Logical Link Control layer, IEEE 802.2, defines Service Access Points (SAP) and Link Service Access Points
(LSAP). These are conceptually similar to TCP port numbers in many ways, although it is important to remember
that they operate at the Logical Link Layer (Layer 2), not the Transport Layer (Layer 4), as TCP does. They are
simply numbers that a device uses when it wants to establish a connection to another device to run a particular
application. The number specifies a particular application protocol. The packets establishing a connection specify
both a Source SAP number (SSAP) and a Destination SAP number (DSAP). These are, obviously enough, the SAP
numbers of the source and destination applications. Table 15-1 lists several of the most common SAP numbers.

Table 15-1. Common SAP numbers

Hex SAP number

Binary SAP number

Description

00

0000 0000

Null LSAP

02

0000 0010

Individual LLC sublayer management

03

0000 0011

Group LLC sublayer management

04

0000 0100

Individual SNA path control

05

0000 0101

Group SNA path control

06

0000 0110

IP

07

0000 0111

IP

08

0000 1000

SNA

09

0000 1001

SNA

0C

0000 1100

SNA

This document is created with the unregistered version of CHM2PDF Pilot

0D

0000 1101

SNA

0E

0000 1110

PROWAY network management
and initialization

18

0001 1000

Texas Instruments

42

0100 0010

802.1 spanning tree protocol

4E

0100 1110

EIA RS-511 manufacturing message
service

7E

0111 1110

X.25 over 802.2 LLC

80

1000 0000

Xerox Network Systems (XNS)

86

1000 0110

Nestar

8E

1000 1110

PROWAY active station list
maintenance

98

1001 1000

Address Resolution Protocol (ARP)

AA

1010 1010

Sub-Network Access Protocol
(SNAP)

BC

1011 1100

Banyan Vines

E0

1110 0000

Netware

F0

1111 0000

NetBIOS

This document is created with the unregistered version of CHM2PDF Pilot

F4

1111 0100

Individual LAN management

F5

1111 0101

Group LAN management

F8

1111 1000

Remote Program Load (RPL)

FA

1111 1010

Ungermann-Bass

FE

1111 1110

ISO network layer protocol

FF

1111 1111

Global LSAP

Cisco routers include the ability to filter based on LSAP numbers using access lists in the range from 200 to 299.
Here is an example of the syntax of an LSAP access list:
 access-list 201 permit 0x0000 0x0D0D

The first hexadecimal number after the permit keyword represents both SSAP and DSAP. The first two hex digits
are the SSAP, and the second two are the DSAP. The next field is a wildcard bit pattern. When the wildcard has a 0
bit, the corresponding bit in the SAP numbers must be exactly as it is in the given pattern, and any place where the
wildcard has a 1 bit can have either a zero or a one.

The mask in this particular example is 0x0D0D. The hex number D has a bit pattern of 1101. So, the access list as
written will allow any packets with either SSAP or DSAP values shown in Table 15-2.

Table 15-2. SAP values matched by the example ACL

Hex

Binary

SAP

0x00

0000 0000

Null LSAP

0x01

0000 0001

Unused

0x04

0000 0100

Individual SNA path control

0x05

0000 0101

Group SNA path control

This document is created with the unregistered version of CHM2PDF Pilot

0x08

0000 1000

SNA

0x09

0000 1001

SNA

0x0D

0000 1101

SNA

Such access lists are usually used to block unwanted local ring traffic such as NetBIOS or Netware, while permitting
the SNA traffic. If, on the other hand, you wanted to permit only NetBIOS traffic and block all other protocols, you
could use an access list like this:
 access-list 202 permit 0xF0F0 0x0000
Explorers and RIFs

When a device wants to send a packet using Logical Link Control (LLC) protocols through a bridged network, it has
the capability of source-routing this packet. This means that the end device is able to specify a particular network
path. To do this, however, it first has to find an appropriate path. It does this by sending a packet called an explorer
through the network. As this explorer packet passes through the network, each bridge adds information about itself
to the packet and forwards it along. So when it finally arrives, it has a complete path description that the end device
can use to build a RIF.

There are, in fact, two different kinds of explorers, called spanning tree explorers and all routes explorers. They
both perform the same basic function of trying to map the best path to the required destination. The difference,
however, is that a spanning tree explorer follows only one path, and the all routes explorer attempts all paths. When a
bridge receives a spanning tree explorer, it forwards the packet along a single path defined by the Spanning Tree
Protocol (STP).

STP eliminates loops from a bridged network. It is important to remember that running STP is optional, and not
every bridge is configured to run it. It is not frequently used in DLSw+ networks because the protocol has the ability
to do useful things such as load sharing between links. STP inherently prevents load sharing among the many different
possible paths through a network by shutting down all paths except for one.

Note that STP is required on transparently bridged networks, however, because there is no RIF to control path
selection. If you have multiple connections between transparent bridges, such as Ethernet switches, you must use
STP.

STP ensures that there is one and only one active path between any two points by first electing a root bridge. This
device is the logical center of the bridged network. When a bridge receives a packet destined for a device that is not
on one of its ports, it simply forwards that packet toward the center. The packet may take several hops to reach the
root bridge, which has an exhaustive table of MAC addresses and knows how to forward every packet that it
receives. If it doesn't know the destination, it will duplicate the packet and send it out every path except the one it
was received on, in the hopes of finding the destination.

A spanning tree explorer packet simply follows the STP path through the network to reach the required destination.
An all routes explorer works similarly, but it follows all possible paths to reach the ultimate destination. At each

This document is created with the unregistered version of CHM2PDF Pilot

bridge where there is a choice to be made between two or more possible paths, the bridge duplicates the packet and
forwards it along all of them. So the destination device will probably receive several possible solutions. In general, it
will pick the first one it receives on the assumption that this must represent the fastest path.

When the destination device receives an explorer packet, it turns it around and sends it back to the original source,
retaining the routing information. Now both devices know how to request a path to one another through the network
when they need to exchange information. When they send packets of application data, they will include a Routing
Information Field (RIF) that specifies the desired path.

This process can obviously get messy if there are a lot of devices all trying to find one another at the same time. So
DLSw+ includes some optimizations that allow routers to improve on the RIF discovery process. Every router
contains a RIF cache of all of the remote devices that it knows how to reach. When a device on the local Token Ring
sends an explorer looking for something the router already knows how to reach, DLSw doesn't need to bother
forwarding this explorer through the network. Instead, it responds directly without having to consume network
resources forwarding the explorer.

Cisco IOS Code Sets

One common misunderstanding that people have about DLSw+ is that to implement Cisco routers in a network using
IBM's Advanced Peer-to-Peer Networking (APPN) functionality, you have to use one of Cisco's APPN code sets.
This is not the case. The core DLSw+ functionality is included in the default minimal IP-Only IOS code set for all
12.x and most 11.x IOS levels. You need to use the APPN code set only if you intend for the router to take an
active part in the higher layer protocols.

APPN is effectively the next generation version of SNA. Among many improvements, it makes the protocol routable
for improved scalability. However, APPN still runs over the same lower layer protocols such as LLC2 on Token
Rings and SDLC on serial interfaces. So, in most cases the router doesn't need to know whether APPN or SNA is
used at higher layers.

The APPN code set is required only if the router needs to provide native APPN routing. In most cases, even
networks using APPN within the mainframe and its Front End Processor (FEP), the bridging functions of DLSw+ are
sufficient to provide all of the required connectivity.

The most recent generations of mainframe computers from IBM are capable of supporting TCP/IP and Gigabit
Ethernet directly, so we expect that the future of mainframe networking will use IP rather than APPN. In this case,
SNA and DLSw will be necessary only to support legacy SNA equipment.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.1 Configuring DLSw

15.1.1 Problem

You want to set up DLSw to allow Token Ring bridging through an IP network.

15.1.2 Solution

There are many different ways to configure two routers to allow Token Ring-to-Token Ring bridging through DLSw.
The most common reason for doing this is to allow Token Ring SNA LLC2 devices to communicate with a
mainframe FEP attached to another Token Ring. It is relatively common to have many remote rings connecting to a
single central ring. In cases like this, it is often best to use one or more dedicated DLSw routers at the central
location. The CPU overhead required for supporting a large number of DLSw connections can be relatively high, so
it is useful to restrict this functionality to special-purpose DLSw routers and keep it off of routers that also need to
handle core routing functions.

Here is the DLSw configuration for a central router, which is the one that connects directly to the ring that holds the
FEP:
 dlsw-central#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.2 Using DLSw to Bridge Between Ethernet and Token
Ring

15.2.1 Problem

You want to set up DLSw to allow Token Ring-to-Ethernet bridging.

15.2.2 Solution

DLSw includes the capability to bridge different kinds of media. One common example of this is bridging an Ethernet
segment to a Token Ring. In this example, we connect an Ethernet branch to the same central Token Ring DLSw
router used in Recipe 15.1:
 dlsw-ether-branch#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.3 Converting Ethernet and Token Ring MAC Addresses

15.3.1 Problem

You want to convert the bit ordering of MAC addresses to see how they will look after passing through an
Ethernet-to-Token Ring bridge.

15.3.2 Solution

The Perl script in Example 15-1 converts Ethernet addresses to the way they will appear when connected through a
bridge to a Token Ring. It also performs the reverse translation of Token Ring addresses to Ethernet, which is
identical.

Example 15-1. eth-tok-mac.pl
 #!/usr/local/bin/perl

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.4 Configuring SDLC

15.4.1 Problem

You want to configure a serial port to connect to an SDLC device so that it can use DLSw to talk to a central
mainframe.

15.4.2 Solution

The global configuration commands in this example are identical to those shown in Recipe 15.1 for using DLSw+ to
connect two Token Rings. The central router's configuration is identical to what was used in Recipe 15.1, so the
following shows only the remote branch configuration:
 dlsw-branch#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.5 Configuring SDLC for Multidrop Connections

15.5.1 Problem

You want to configure a serial port for an SDLC multidrop line supporting several devices.

15.5.2 Solution

SDLC supports multidrop connections. These are serial links that connect to several downstream devices in series.
Each device has its own SDLC address, which must be configured in the router. The global DLSw configuration for
this example is omitted here because it is identical to the previous recipe:
 dlsw-branch#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.6 Using STUN

15.6.1 Problem

You want to connect two serial devices through an IP network.

15.6.2 Solution

Serial Tunnel (STUN) provides the ability to emulate an SDLC circuit through an IP network. To simply connect two
SDLC or two HDLC ports on different routers together, you can use the following:
 Stun-A#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.7 Using BSTUN

15.7.1 Problem

You want to connect two Bisync (BSC) devices through an IP network.

15.7.2 Solution

This pair of router configurations shows how to define a tunnel connecting two serial ports that support BSC devices:
 BSTUN-A#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.8 Controlling DLSw Packet Fragmentation

15.8.1 Problem

You want to control packet fragmentation in DLSw to improve throughput.

15.8.2 Solution

There are two methods for controlling packet fragmentation when using DLSw. The first is to set an MTU for the
bridge, as mentioned in Recipe 15.2:
 Router-A(config)#dlsw remote-peer 0 tcp 10.1.1.5 lf 1470 lsap-output-list 200

This method is used primarily when connecting media with different MTU values. However, it is also common to
connect two high-MTU media such as Token Rings via an intervening network that has low-MTU links. In this
situation, you should take advantage of DLSw's TCP transport by using the following command:
 Router-A(config)#ip tcp path-mtu-discovery
15.8.3 Discussion

These two different commands work at different levels and accomplish different goals. The first one sets the MTU of
packets that pass through the bridge. However, the DLSw packets themselves need not have the same MTU. In
fact, DLSw+ is able to break up a large Token Ring packet and carry it in a series of several DLSw packets, then
reassemble the large packet at the other end. The first command instructs DLSw not to accept any packets for
bridging if they are larger than the specified size.

The most serious performance problems happen when the DLSw packets themselves must be fragmented in the
network. In general, the DLSw routers will use the largest MTU that they can. This will usually wind up being the
MTU of the first link into the IP network heading towards the router at the other end of the bridge. There could be a
link along the path that can't transmit a packet this large, so a router in the middle of the network will fragment the
packet according to standard TCP packet fragmentation rules. The receiving DLSw router reassembles the packet
before de-encapsulating the payload packet.

This tends to be relatively inefficient, and it can cause serious throughput issues in some networks. So, to avoid the
problem, you can configure both DLSw peer routers to use a clever feature of TCP called Path MTU Discovery,
which is described in RFC 1191. When the TCP connection is first made, in this case by forming a DLSw peer
relationship between two routers, the routers start by figuring out the largest MTU that they can pass between them
without fragmentation.

They do this by setting the Don't Fragment (DF) bit in the IP header and sending the largest packet that the interface
can support. If a router somewhere in the network finds that it must fragment the packet to forward it, it will drop it
instead and send back an informational ICMP "Datagram Too Big" packet to report the problem. The ICMP
message includes the maximum size that it could have passed along. This allows the two end points to quickly deduce
the largest packet size they can use.

This document is created with the unregistered version of CHM2PDF Pilot

TCP Path MTU Discovery is not enabled by default on Cisco routers. This command will affect all TCP sessions
with this router, not just DLSw. In general, it is most effective if all of the DLSw routers have this feature enabled.

15.8.4 See Also

Recipe 15.2; RFC 1191

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.9 Tagging DLSw Packets for QoS

15.9.1 Problem

You want to set the Type of Service (TOS) field in DLSw packets to ensure that they get preferential treatment in the
network.

15.9.2 Solution

In many organizations, the SNA traffic that is encapsulated in DLSw is considered both mission critical and time
sensitive. Lower priority traffic should not be allowed to interfere with it. The simplest way to accomplish this is to tag
these high priority packets using the standard IP Precedence field:
 Router-A#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.10 Supporting SNA Priorities

15.10.1 Problem

You want DLSw to preserve and support the SNA or APPN class of service definitions for forwarding packets
through your IP network.

15.10.2 Solution

To configure DLSw to follow the SNA or APPN priorities defined in the traffic flow, you must configure the peer
relationship to allow multiple distinct data streams:
 Router-A#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.11 DLSw+ Redundancy and Fault Tolerance

15.11.1 Problem

You want to improve the fault tolerance of your DLSw network.

15.11.2 Solution

There are several things you can do to improve the reliability and fault tolerance of your network. Many of these
solutions have the added benefit of improving performance. The first important thing to consider is having more than
one DLSw peer router connected to the mainframe's Token Ring. In this case, you will want to make sure that you
balance the load between the two peers as much as possible:
 dlsw-branch#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.12 Viewing DLSw Status Information

15.12.1 Problem

You want to check on DLSw status on your router.

15.12.2 Solution

This command shows the status of a DLSw peer relationship:
 Router>show dlsw peers

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.13 Viewing SDLC Status Information

15.13.1 Problem

You want to check the status of an SDLC device on your router.

15.13.2 Solution

You can get a lot of useful SDLC information by simply looking at the interface:
 Router>show interface serial1

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 15.14 Debugging DSLw

15.14.1 Problem

You want to debug and isolate DLSw problems.

15.14.2 Solution

The first thing to do with any DLSw issue is to verify that the peers are working correctly, as in Recipe 15.12. If the
peers are not established, then test IP connectivity with ping packets. If you can ping but the peers won't come up,
then verify your configuration as in Recipe 15.1. In particular, ensure that the remote peer of each router precisely
matches the local peer on the other end.

If the DLSw peers are active, check the circuits, as in Recipe 15.12.

For failed circuits involving SDLC devices, check the serial interface, as in Recipe 15.13.

For Token Ring or Ethernet devices, verify that the interface is functioning properly as in Chapter 16.

If the peers are active and the interfaces look good, then there are three main things that could still be wrong. There
could be a loop problem within the DLSw network. There could be a MAC address problem, or a MAC or LSAP
filtering issue. Or there could be a network congestion or performance problem.

There are several useful debug commands for use with DLSw. For looking at the router-to-router DLSw transport,
you can use the debug dlsw command:
 dlsw-branch#debug dlsw

You can get other useful information about SNA and LLC2 connection problems with these debug commands:
 dlsw-branch#debug sna state

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 16. Router Interfaces and Media

Introduction

Recipe 16.1. Viewing Interface Status

Recipe 16.2. Configuring Serial Interfaces

Recipe 16.3. Using an Internal T1 CSU/DSU

Recipe 16.4. Using an Internal ISDN PRI Module

Recipe 16.5. Using an Internal 56Kbps CSU/DSU

Recipe 16.6. Configuring an Async Serial Interface

Recipe 16.7. Configuring ATM Subinterfaces

Recipe 16.8. Setting Payload Scrambling on an ATM Circuit

Recipe 16.9. Configuring Ethernet Interface Features

Recipe 16.10. Configuring Token Ring Interface Features

Recipe 16.11. Connecting VLAN Trunks With ISL

Recipe 16.12. Connecting VLAN Trunks with 802.1Q

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Cisco supports a huge variety of different media types. There are over 50 different types of interface adapters
available for the 7200 series routers alone. Of course, many of these are closely related variants such as the same
OC3 card with multimode or single mode fiber connectors. The sheer variety of different media types makes it
impossible for us to cover them all in any detail, so this chapter will focus instead on some of the most popular
interface types. We will also look at a few interface types that have particularly interesting features or are tricky to set
up properly.

We also suggest looking at some of the other chapters in this book where we have covered interface-specific
material. For example, there is useful information on serial interfaces in the discussion of Frame Relay in Chapter 10.
Similarly, we covered a lot of ISDN information while discussing Dial Backup in Chapter 13. And there is some
discussion of both SDLC serial configuration and Token Ring features in Chapter 15, which looks at DLSw. Further,
the HSRP discussion in Chapter 22 includes several useful Ethernet and Token Ring features.

Whole books have been written on each of the different media types discussed in this chapter, so we clearly can't
offer a very comprehensive summary here. For information about the various serial media, refer to T1: A Survival
Guide (O'Reilly). Ethernet: The Definitive Guide (O'Reilly) includes a vast amount of useful and interesting information
about how Ethernet works, and Designing Large-Scale LANs (O'Reilly) includes information about other LAN
protocols including Token Ring and ATM, as well as information about VLAN trunking protocols.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 16.1 Viewing Interface Status

16.1.1 Problem

You want to look at the status of your router's interfaces.

16.1.2 Solution

You can look at the current status of any interface using the show interfaces EXEC command. With no arguments,
this command will show the status of all interfaces on the router:
 Router1#show interfaces

You can also look at a particular interface by including its name with the command:
 Router1#show interfaces FastEthernet0/1

It is also often useful to look specifically at the IP configuration of one or all of your interfaces using the show ip
interface command:
 Router1#show ip interface brief

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 16.2 Configuring Serial Interfaces

16.2.1 Problem

You want to configure a serial interface for a WAN connection.

16.2.2 Solution

When you configure a router's serial interface, you need to specify the encapsulation, the IP address, and whether the
interface will be the DCE or DTE:
 Router3#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 16.3 Using an Internal T1 CSU/DSU

16.3.1 Problem

You want to configure an internal CSU/DSU for a WAN connection.

16.3.2 Solution

Cisco has a variety of different types of internal CSU/DSU devices that you can install in a router. In the following
example, we have configured the internal CSU to support a fractional T1 circuit:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 16.4 Using an Internal ISDN PRI Module

16.4.1 Problem

You want to configure an internal ISDN PRI module.

16.4.2 Solution

You can configure an ISDN PRI controller module using the controller T1 command set as follows:
 Router8#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 16.5 Using an Internal 56Kbps CSU/DSU

16.5.1 Problem

You want to configure an internal 56Kbps CSU/DSU.

16.5.2 Solution

The configuration for an internal 56Kbps CSU/DSU is similar to that of an internal T1 CSU/DSU:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 16.6 Configuring an Async Serial Interface

16.6.1 Problem

You want to configure a sync/async interface in asynchronous mode.

16.6.2 Solution

Cisco has a class of serial modules that can support either synchronous or asynchronous communications, as
required. You can use the physical-layer async command to change the interface from the default synchronous to
asynchronous mode:
 Router3#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 16.7 Configuring ATM Subinterfaces

16.7.1 Problem

You want to configure an ATM link with PVCs that connect to several other routers.

16.7.2 Solution

Our preferred way of handling ATM PVCs is to use ATM subinterfaces. We also recommend using the IOS feature
that sends ATM Operations Administration and Management (OAM) cells periodically to test the VC. Cisco
provides two different syntaxes for configuring ATM PVCs. Here is an example of the older method:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 16.8 Setting Payload Scrambling on an ATM Circuit

16.8.1 Problem

You want to enable payload scrambling on your ATM circuit to prevent user data from being interpreted as an
in-band control sequence.

16.8.2 Solution

The command to enable scrambling varies depending on the type of circuit. For a T3 ATM circuit, you must use the
command atm ds3-scramble:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 16.9 Configuring Ethernet Interface Features

16.9.1 Problem

You want to force a particular Ethernet speed or duplex setting.

16.9.2 Solution

Cisco routers allow you to adjust several different Layer 1 and 2 parameters on Ethernet interfaces, depending on
your specific hardware. On interfaces that support more than one medium, you can specify which media type you
want to use with the media-type command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 16.10 Configuring Token Ring Interface Features

16.10.1 Problem

You want to configure a Token Ring interface.

16.10.2 Solution

The main thing that you need to set properly for Token Ring interfaces is the ring speed:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 16.11 Connecting VLAN Trunks With ISL

16.11.1 Problem

You want to connect an InterSwitch Link (ISL) VLAN trunk to your router.

16.11.2 Solution

The following set of commands will allow you to connect an ISL trunk to your router:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 16.12 Connecting VLAN Trunks with 802.1Q

16.12.1 Problem

You want to connect an 802.1Q VLAN trunk directly to your router.

16.12.2 Solution

To connect an 802.1Q trunk to your router, use the following set of commands:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 17. Simple Network Management Protocol

Introduction

Recipe 17.1. Configuring SNMP

Recipe 17.2. Extracting Router Information via SNMP Tools

Recipe 17.3. Recording Important Router Information for SNMP Access

Recipe 17.4. Extracting Inventory Information from a List of Routers with SNMP

Recipe 17.5. Using Access Lists to Protect SNMP Access

Recipe 17.6. Logging Unauthorized SNMP Attempts

Recipe 17.7. Limiting MIB Access

Recipe 17.8. Using SNMP to Modify a Router's Running Configuration

Recipe 17.9. Using SNMP to Copy a New IOS Image

Recipe 17.10. Using SNMP to Perform Mass Configuration Changes

Recipe 17.11. Preventing Unauthorized Configuration Modifications

Recipe 17.12. Making Interface Table Numbers Permanent

Recipe 17.13. Enabling SNMP Traps and Informs

Recipe 17.14. Sending syslog Messages as SNMP Traps and Informs

Recipe 17.15. Setting SNMP Packet Size

Recipe 17.16. Setting SNMP Queue Size

Recipe 17.17. Setting SNMP Timeout Values

Recipe 17.18. Disabling Link Up/Down Traps per Interface

Recipe 17.19. Setting the IP Source Address for SNMP Traps

Recipe 17.20. Using RMON to Send Traps

Recipe 17.21. Enabling SNMPv3

Recipe 17.22. Using SAA

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Since its introduction in 1988, the Simple Network Management Protocol (SNMP) has become the most popular
network management protocol for TCP/IP based networks. The IETF created SNMP to allow remote management
of IP based devices using a standardized set of operations. It is now widely supported by servers, printers, hubs,
switches, modems, UPS systems, and (of course) Cisco routers.

The SNMP set of standards define much more than a communication protocol used for management traffic. The
standards also define how management data should be accessed and stored, as well as the entire distributed
framework of SNMP agents and servers. The IETF has officially recognized SNMP as a fully standard part of the IP
protocol suite. The original SNMP definition is documented in RFC 1157.

In 1993, SNMP Version 2 (SNMPv2) was created to address a number of functional deficiencies that were
apparent in the original protocol. The added and improved features included better error handling, larger data
counters (64-bit), improved efficiency (get-bulk transfers), confirmed event notifications (informs), and most notably,
security enhancements. Unfortunately, SNMPv2 did not become widely accepted because the IETF was unable to
come to a consensus on the SNMP security features.

So, a revised edition of SNMPv2 was released in 1996, which included all of the proposed enhancements except for
the security facility. It is discussed in RFCs 1905, 1906, and 1907. The IETF refers to this new version as
SNMPv2c and it uses the same insecure security model as SNMPv1. This model relies on passwords called
community strings that are sent over the network as clear-text. SNMPv2c never enjoyed widespread success
throughout the IP community. Consequently, most organizations continue to use SNMPv1 except when they need to
access the occasional large counter variable. The IETF recently announced that SNMPv3 would be the new
standard, with SNMPv1, SNMPv2, and SNMPv2c being considered purely historical.

Cisco's IOS supported SNMPv2 until Version 11.2(6)F, when Cisco began supporting SNMPv2c. Cisco continues
to support SNMPv2c in every IOS version beginning with 11.2(6)F. In addition, every version of IOS has supported
SNMPv1 since the earliest releases.

The compromise that became SNMPv2c left the management protocol without satisfactory security features. So, in
1998, the IETF began working on SNMPv3, which is defined in RFCs 2571-2575. Essentially, SNMPv3 is a set of
security enhancements to be used in conjunction with SNMPv2c. This means that SNMPv3 is not a stand-alone
management protocol and does not replace SNMPv2c or SNMPv1.

SNMPv3 provides a secure method for accessing devices using authentication, message integrity, and encryption of
SNMP packets throughout the network. We have included a recipe describing how to use the SNMPv3 security
enhancements (see Recipe 17.21). Table 17-1 lists the three supported versions of SNMP and highlights their
security capabilities.

Table 17-1. SNMP versions supported by Cisco

This document is created with the unregistered version of CHM2PDF Pilot

Version

Authentication

Encryption

Description

v1

Community strings

None

Trivial authentication.
Packets sent in clear-text.

v2c

Community strings

None

Trivial authentication.
Packets sent in clear-text.

v3(noAuthNoPriv)

Username

None

Trivial authentication.
Packets sent in clear-text.

v3(authNoPriv)

SHA or MD5 encrypted
pass phrase

None

Strong authentication.
Packets sent in clear-text.

v3(authPriv)

SHA or MD5 encrypted
pass phrase

DES

Strong authentication.
Packets are encrypted.

SNMP Management Model

SNMP defines two main types of entities, managers and agents. A manager is a server that runs network
management software that is responsible for a particular network. These servers are commonly referred to as
Network Management Stations (NMS). There are several excellent commercial NMS platforms on the market.
Throughout this book we will refer to the freely distributed NET-SNMP system as a reference NMS.

An agent is an embedded piece of software that resides on a remote device that you wish to manage. In fact, almost
every IP-capable device provides some sort of built-in SNMP agent. The agent has two main functions. First, the
agent must listen for incoming SNMP requests from the NMS and respond appropriately. And second, the agent
must monitor internal events and create SNMP traps to alert the NMS that something has happened. This chapter
will focus mainly on how to configure the router's agent.

The NMS is usually configured to poll all of the key devices in the network periodically using SNMP Get requests.
These are UDP packets sent to the agent on the well-known SNMP port 161. The SNMP Get request prompts the
remote device to respond with one or more pieces of relevant operating information.

However, because there could be hundreds or thousands of remote devices, it is often not practical to poll a
particular remote device more often than once every few minutes (and in many networks you are lucky if you can poll
each device more than a few times per hour). On a schedule like this, a remote device may suffer a serious problem
that goes undetected—it's possible to crash and reboot in between polls from the NMS. So, on the next poll, the
NMS will see everything operating normally and never know that it completely missed a catastrophe.

This document is created with the unregistered version of CHM2PDF Pilot

Therefore, an SNMP agent also has the ability to send information using an SNMP trap without having to wait for a
poll. A trap is an unsolicited piece of information, usually representing a problem situation (although some traps are
more informational in nature). Traps are UDP packets sent from the agent to the NMS on the other well-known
SNMP port number, 162. There are many different types of traps that an agent can send, depending on what type of
equipment it manages. Some traps represent non-critical issues. It is often up to the network administrator to decide
which types of traps will be useful.

The NMS does not acknowledge traps, and since traps are often sent to report network problems, it is not
uncommon for trap reports to get lost and never make it to the NMS. In many cases, this is acceptable because the
trap represents a transient transmission problem that the NMS will discover by other means if this trap is not
delivered. However, critical information can sometimes be lost when a trap is not delivered.

To address this shortcoming, SNMPv2c and SNMPv3 include another type of packet called an SNMP inform. This
is nearly identical to a standard trap, except that the SNMP agent will wait for an acknowledgement. If the agent
does not receive an acknowledgement within a certain amount of time, it will attempt to retransmit the inform.

SNMP informs are not common today because SNMPv2c was never widely adopted. However, SNMPv3 also
includes informs. Since SNMPv3 promises to become the mainstream SNMP protocol, it seems inevitable that
enhancements such as SNMP informs will start to be more common.

MIBs and OIDs

SNMP uses a special tree structure called a Management Information Base (MIB) to organize the management data.
People will often talk about different MIBs, such as the T1 MIB, or an ATM MIB. In fact, these are all just branches
or extensions of the same global MIB tree structure. However, the relative independence of these different branches
makes it convenient to talk about them this way.

A particular SNMP agent will care only about those few MIB branches that are relevant to the particular remote
device this agent runs on. If the device doesn't have any T1 interfaces, then the agent doesn't need to know anything
about the T1 branch of the global MIB tree. Similarly, the NMS for a network containing no ATM doesn't need to
be able to resolve any of the variables in the ATM branches of the MIB tree.

The MIB tree structure is defined by a long sequence of numbers separated by dots, such as .1.3.6.1.2.1.1.4.0. This
number is called an Object Identifier (OID). Since we will be working with OID strings throughout this chapter, it is
worthwhile to briefly review how they work and what they mean.

The OID is a numerical representation of the MIB tree structure. Each digit represents a node in this tree structure.
The trunk of the tree is on the left; the leaves are on the right. In the example string, .1.3.6.1.2.1.1.4.0, the first digit,
.1, signifies that this variable is part of the MIB that is administered by the International Standards Organization
(ISO). There are other nodes at this top level of the tree. The International Telephone and Telegraph Consultative
Committee (CCITT) administers the .0 tree structure. The ISO and CCITT jointly administer .2.

The first node under the ISO MIB tree of this example is .3. The ISO has allocated this node for all other
organizations. The U.S. Department of Defense (DOD) is designated by the branch number .6. The DOD, in turn has
allocated branch number .1 for the Internet Activities Board (IAB). So, just about every SNMP MIB variable you

This document is created with the unregistered version of CHM2PDF Pilot

will ever see will begin with .1.3.6.1.

There are four commonly used subbranches under the IAB (also called simply "Internet") node. These are designated
directory (1), mgmt (2), experimental (3) and private (4). The directory node is seldom used in practice. The mgmt
node is used for all IETF-standard MIB extensions, which are documented in RFCs. This would include, for
example, the T1 and ATM examples mentioned earlier. However, it would not include any vendor-specific variables
such as the CPU utilization on a Cisco router. SNMP protocol and application developers use the experimental
subtree to hold data that is not yet standard. This allows you to use experimental MIBs in a production network
without fear of causing conflicts. Finally, the private subtree contains vendor specific MIB variables.

Before returning to the example, we want to take a brief detour down the private tree, because many of the examples
in this book include Cisco-specific MIB variables. A good example of a Cisco MIB variable is
.1.3.6.1.4.1.9.2.1.8.0, which gives the amount of free memory in a Cisco router. There is only one subtree under the
private node, and it is called enterprises, .1.3.6.1.4.1. Of the hundreds of registered owners of private MIB trees,
Cisco is number 9, so all Cisco-specific MIB extensions begin with .1.3.6.1.4.1.9.

Referring again to the previous example string (.1.3.6.1.2.1.1.4.0), you can see this represents a variable in the mgmt
subtree, .1.3.6.1.2. The next digit is .1 here, which represents an SNMP MIB variable.

The following digit, .1, refers to a specific group of variables, which, in the case of mgmt variables, would be defined
by an RFC. In this particular case, the value .1 refers to the system MIB, which is detailed in RFC 1450.

From this level down, a special naming convention is adopted to help you to remember which MIB you are looking
at. The names of every variable under the system node begin with "sys". They are sysDescr (1), sysObjectID (2),
sysUpTime (3), sysContact (4), sysName (5), sysLocation (6), sysServices (7), sysORLastChange (8), and
sysORTable (9). You can find detailed descriptions of what all of these mean in RFC 1450.

In fact, reading through MIB descriptions is not only an excellent way to understand the hierarchical structure of the
MIB, but it's also extremely useful when you are trying to decide what information you can and should be extracting
from your equipment.

In the example string, .1.3.6.1.2.1.1.4.0, the value is .4, for sysContact. The following .0 tells the agent to send the
contents of this node, rather than treating it as the root of further subtrees. So the OID string uniquely identifies a
single piece of information. In this case, that information is the contact information for the device.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.1 Configuring SNMP

17.1.1 Problem

You want to set up basic SNMP services on a router.

17.1.2 Solution

To enable read-only SNMP services, use the following configuration command:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.2 Extracting Router Information via SNMP Tools

17.2.1 Problem

You wish to extract or change router information via SNMP.

17.2.2 Solution

To extract router information via SNMP, we will use the suite of SNMP tools provided with the NET-SNMP toolkit
(see Appendix A for more details).

Use snmpget to extract a single MIB object from the router's MIB tree. This example uses snmpget to extract the
router's system contact information:
 freebsd% snmpget -v1 -c ORARO Router .1.3.6.1.2.1.1.4.0

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.3 Recording Important Router Information for SNMP
Access

17.3.1 Problem

You want to record important information such as physical locations, contact names, and serial numbers for later
SNMP access.

17.3.2 Solution

To record important physical information regarding the router, use the following commands:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.4 Extracting Inventory Information from a List of Routers
with SNMP

17.4.1 Problem

You want to build a report of important router information for all of your managed routers.

17.4.2 Solution

The following Perl script extracts important router information such as router name, physical locations, contact
names, and serial numbers from a list of routers, and creates a report of this information. The script is intended to be
run manually and no arguments are required or expected.

Here's some example output:
 Freebsd% ./inventory.pl

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.5 Using Access Lists to Protect SNMP Access

17.5.1 Problem

You want to provide extra security to SNMP using access lists.

17.5.2 Solution

You can use the following commands to restrict which IP source addresses are allowed to access SNMP functions
on the router. This is the legacy method:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.6 Logging Unauthorized SNMP Attempts

17.6.1 Problem

You want to log unauthorized SNMP attempts.

17.6.2 Solution

Use the following commands to configure your router to log unauthorized SNMP requests:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.7 Limiting MIB Access

17.7.1 Problem

You want to limit which MIB variables can be remotely accessed with SNMP.

17.7.2 Solution

You can use the following commands to restrict SNMP access to portions of the MIB tree. This example shows the
legacy configuration method:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.8 Using SNMP to Modify a Router's Running
Configuration

17.8.1 Problem

You want to use SNMP to download or modify a router's configuration.

17.8.2 Solution

To upload or download a current copy of your router's configuration file to a TFTP server via SNMP, you have to
first configure the router for read-write SNMP access:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.9 Using SNMP to Copy a New IOS Image

17.9.1 Problem

You want use SNMP to remotely upgrade a router's IOS.

17.9.2 Solution

Before you can upload or download the router's IOS image to a TFTP server, you have to set up a valid read-write
SNMP community string:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.10 Using SNMP to Perform Mass Configuration Changes

17.10.1 Problem

You want to automate the distribution of a set of configuration commands to a large number of routers.

17.10.2 Solution

The Perl script in Example 17-3 will distribute configuration commands to a large number of routers. It works using
SNMP to trigger TFTP file transfers into the routers. In effect, this script lets you automatically distribute a series of
configuration commands to a list of routers. Automating routine changes like this saves time and effort but more
importantly, it virtually eliminates typing mistakes.

Here's some example output:
 Freebsd% ./snmpcfg.pl

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.11 Preventing Unauthorized Configuration Modifications

17.11.1 Problem

You want to ensure that only authorized devices can use SNMP and TFTP to send or receive configuration
information.

17.11.2 Solution

You can use the snmp-server tftp-server-list configuration command to restrict which TFTP servers the router can
use in response to an SNMP trigger to upload or download configuration information:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.12 Making Interface Table Numbers Permanent

17.12.1 Problem

You want to ensure that your router uses the same SNMP interface numbers every time it reboots.

17.12.2 Solution

To ensure that SNMP interface numbers remain permanent after a router power cycle, use the following command.
This is a global command that affects all interfaces:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.13 Enabling SNMP Traps and Informs

17.13.1 Problem

You want the router to generate SNMP traps or informs in response to various network events.

17.13.2 Solution

The following configuration commands will enable your router to send unsolicited SNMP traps to a network
management server:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.14 Sending syslog Messages as SNMP Traps and Informs

17.14.1 Problem

You want to send syslog messages as SNMP traps or informs.

17.14.2 Solution

You can configure the router to forward syslog messages to your network management server as SNMP traps
instead of syslog packets with the following configuration commands:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.15 Setting SNMP Packet Size

17.15.1 Problem

You want to change the default SNMP packet size.

17.15.2 Solution

The following configuration command adjusts the default packet size for all SNMP packets leaving the router:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.16 Setting SNMP Queue Size

17.16.1 Problem

You want to increase the size of a router's SNMP trap queue.

17.16.2 Solution

The following command increases the size of a router's SNMP trap queue:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.17 Setting SNMP Timeout Values

17.17.1 Problem

You want to adjust the SNMP trap timeout value.

17.17.2 Solution

You can use the following configuration command to adjust a router's SNMP trap timeout value:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.18 Disabling Link Up/Down Traps per Interface

17.18.1 Problem

You want to disable link up/down traps for specific interfaces.

17.18.2 Solution

To disable SNMP link status-change traps for a particular interface, use the following configuration command:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.19 Setting the IP Source Address for SNMP Traps

17.19.1 Problem

You want to set the source IP address for all SNMP traps leaving a router.

17.19.2 Solution

To set the default IP source address for all traps leaving a router, use the following configuration commands:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.20 Using RMON to Send Traps

17.20.1 Problem

You want the router to send a trap when the CPU rises above a threshold, or when other important events occur.

17.20.2 Solution

You can configure a router to monitor its own CPU utilization and trigger an SNMP trap when the value exceeds a
defined threshold with the following set of configuration commands:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.21 Enabling SNMPv3

17.21.1 Problem

You want to enable SNMPv3 on your router for security purposes.

17.21.2 Solution

SNMPv3 supports three modes of operation, each with different security features. These modes were summarized in
Table 17-1 at the beginning of this chapter. The following configuration commands enable SNMPv3 with no
authentication and no encryption services (noAuthNoPriv):
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 17.22 Using SAA

17.22.1 Problem

You want to configure the routers to automatically poll one another to collect performance statistics.

17.22.2 Solution

Cisco supplies a feature called the Service Assurance Agent (SAA) in IOS Version 12.0(5)T and higher, which
allows the routers to automatically poll one another to collect end-to-end performance statistics:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 18. Logging

Introduction

Recipe 18.1. Enabling Local Router Logging

Recipe 18.2. Setting the Log Size

Recipe 18.3. Clearing the Router's Log

Recipe 18.4. Sending Log Messages to Your Screen

Recipe 18.5. Using a Remote Log Server

Recipe 18.6. Enabling Syslog on a Unix Server

Recipe 18.7. Changing the Default Log Facility

Recipe 18.8. Restricting What Log Messages Are Sent to the Server

Recipe 18.9. Setting the IP Source Address for Syslog Messages

Recipe 18.10. Logging Router Syslog Messages in Different Files

Recipe 18.11. Maintaining Syslog Files on the Server

Recipe 18.12. Testing the Syslog Sever Configuration

Recipe 18.13. Preventing the Most Common Messages from Being Logged

Recipe 18.14. Rate-Limiting Syslog Traffic

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Many network administrators overlook the importance of router logs. Logging is critical for fault notification, network
forensics, and security auditing.

Cisco routers handle log messages in five ways:

•

By default, the router sends all log messages to its console port. Only users that are physically connected to
the router console port may view these messages. This is called console logging.

•

Terminal logging is similar to console logging, but it displays log messages to the router's VTY lines. This type
of logging is not enabled by default; if you want to use it, you need to need activate it for each required line.

•

Buffered logging creates a circular buffer within the router's RAM for storing log messages. This circular
buffer has a fixed size to ensure that the log will not deplete valuable system memory. The router saves
memory by deleting old messages from the buffer as new messages are added.

•

The router can use syslog to forward log messages to external syslog servers for centralized storage. This
type of logging is not enabled by default. Much of this chapter is devoted to configuring remote syslog
features. The router sends syslog messages to the server on UDP port 514. The server does not
acknowledge these messages.

•

With SNMP trap logging, the router is able to use SNMP traps to send log messages to an external SNMP
server. This is an effective method of handling log messages in a SNMP-based environment, but it has certain
limitations. We discuss this logging method in Chapter 17, which deals with SNMP configuration.

Cisco log messages are categorized by severity level, following the structure and format of the BSD Unix syslog
framework, as shown in Table 18-1. The lower the severity level, the more critical the log message is.

Table 18-1. Cisco logging severity levels

Level

Level name

Description

Syslog definition

0

Emergencies

Router unusable

LOG_EMERG

1

Alerts

Immediate action needed

LOG_ALERT

This document is created with the unregistered version of CHM2PDF Pilot

2

Critical

Critical conditions

LOG_CRIT

3

Errors

Error conditions

LOG_ERR

4

Warnings

Warning conditions

LOG_WARNING

5

Notifications

Normal but important
conditions

LOG_NOTICE

6

Informational

Informational messages

LOG_INFO

7

Debugging

Debugging messages

LOG_DEBUG

Here is an example of a log message that shows the typical format of Cisco router log messages:
 Apr 12 14:01:16: %CLEAR-5-COUNTERS: Clear counter on all interfaces by ijbrown on

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.1 Enabling Local Router Logging

18.1.1 Problem

You want your router to record log messages, instead of just displaying them on the console.

18.1.2 Solution

Use the logging buffered configuration command to enable the local storage of router log messages:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.2 Setting the Log Size

18.2.1 Problem

You want to change the size of the router's log.

18.2.2 Solution

You can use the optional size attribute with the logging buffered configuration command to change the size of your
router's internal log buffer:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.3 Clearing the Router's Log

18.3.1 Problem

You want to clear the router's log buffer.

18.3.2 Solution

Use the clear logging command to clear the router's internal log buffer:
 Router#clear logging

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.4 Sending Log Messages to Your Screen

18.4.1 Problem

You want the router to display log messages to your VTY session in real time.

18.4.2 Solution

Use the terminal monitor command to enable the displaying of log messages to your VTY:
 Router#terminal monitor

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.5 Using a Remote Log Server

18.5.1 Problem

You want to send log messages to a remote syslog server.

18.5.2 Solution

Use the following command to send router log messages to a remote syslog server:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.6 Enabling Syslog on a Unix Server

18.6.1 Problem

You want to configure a Unix server to accept syslog messages from routers.

18.6.2 Solution

For most flavors of Unix and Linux, you simple need to modify the /etc/syslog.conf file on your Unix server to
include the following entry (basic configuration):
 local7.info /var/log/rtrlog

Cisco routers use the local7 logging facility by default. This configuration line tells the syslog program to store any
such messages that have a severity level of informational or higher in the file /var/log/rtrlog. The lefthand column in
the configuration file specifies the logging facility and priority level, while the right hand column specifies the logging
facility and priority level. The righthand column specifies the file name where these messages should be stored.

Note that the syslog.conf file needs tabs, and not spaces, between the various fields.

18.6.3 Discussion

By default, your syslog server may not be equipped to handle router log messages. The configuration entry show in
the example causes the syslog daemon to store all router messages with an informational severity level or higher in a
file called /var/log/rtrlog. This file must exist and have the proper file attributes before the server can begin to
forward messages to it:
 Freebsd# cd /var/log

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.7 Changing the Default Log Facility

18.7.1 Problem

You want to change the default logging facility.

18.7.2 Solution

Use the logging facility configuration command to change the syslog facility that the router sends error messages to:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.8 Restricting What Log Messages Are Sent to the Server

18.8.1 Problem

You want to limit which logging levels the router will send to the syslog server.

18.8.2 Solution

Use the logging trap configuration command to limit the severity level of syslog messages:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.9 Setting the IP Source Address for Syslog Messages

18.9.1 Problem

You want the router to use a particular source IP address for syslog messages.

18.9.2 Solution

Use the logging source-interface configuration command to specify a particular IP address for syslog messages:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.10 Logging Router Syslog Messages in Different Files

18.10.1 Problem

You want the Unix server to send router log messages to a different log file than the local system messages.

18.10.2 Solution

To stop router syslog messages from inundating your local system log files, use the following commands:
 local7.info /var/log/rtrlog

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.11 Maintaining Syslog Files on the Server

18.11.1 Problem

You want to automatically rotate and archive router log files on a Unix server.

18.11.2 Solution

The Bourne shell script given in Example 18-1 will automatically rotate router log files to ensure that these files don't
become too big and cumbersome to navigate. The script is intended to be invoked via a cron job on a daily basis,
but you can also run it manually. By default, the script retains seven days' worth of archived log files and compresses
files older than two days. No arguments are required or expected.

Example 18-1. rotatelog.sh
 #!/bin/sh

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.12 Testing the Syslog Sever Configuration

18.12.1 Problem

You want to test the configuration of your syslog server to ensure that the log messages are stored in their correct
location.

18.12.2 Solution

The Bourne shell script in Example 18-2 will emulate syslog messages at various severity levels to ensure that your
server routes them to the correct location. The script will emulate syslog messages to the local7 syslog facility by
default, but the logging facility is completely configurable. No arguments are required or expected.

Example 18-2. testlog.sh
 #!/bin/sh

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.13 Preventing the Most Common Messages from Being
Logged

18.13.1 Problem

You want to prevent the router from sending link up/down syslog messages for unimportant router interfaces.

18.13.2 Solution

Use the no logging event configuration commands to disable the logging of common interface-level messages:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 18.14 Rate-Limiting Syslog Traffic

18.14.1 Problem

You wish to rate-limit the syslog traffic to your server.

18.14.2 Solution

Use the logging rate-limit configuration command to limit the number of syslog packets sent to your server:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 19. Access Lists

Introduction

Recipe 19.1. Filtering by Source or Destination IP Address

Recipe 19.2. Adding a Comment to an ACL

Recipe 19.3. Filtering by Application

Recipe 19.4. Filtering Based on TCP Header Flags

Recipe 19.5. Restricting TCP Session Direction

Recipe 19.6. Filtering Multiport Applications

Recipe 19.7. Filtering Based on DSCP and TOS

Recipe 19.8. Logging when an Access List Is Used

Recipe 19.9. Logging TCP Sessions

Recipe 19.10. Analyzing ACL Log Entries

Recipe 19.11. Using Named and Reflexive Access Lists

Recipe 19.12. Dealing with Passive Mode FTP

Recipe 19.13. Using Context-Based Access Lists

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

An Access Control List (ACL) is generically a method for doing pattern matching based on protocol information.
There are many reasons for doing this type of pattern matching, such as restricting access for security reasons or
restricting routing tables for performance reasons.

Cisco has several different general kinds of access lists. The most common are the numbered ACLs, which are
summarized in Table 19-1. But there are also named access lists, reflexive access lists, context-based access lists,
and rate-limit access lists. There are even timed access lists that can have different effects at different times of day,
although we will not cover them in this book. Within each of these general categories, there are many different types
of ACLs that match on different protocol information. When working with route filtering, it is often easiest to work
with prefix lists, which are another type of ACL discussed in more detail in Chapter 6, Chapter 7, Chapter 8 and
Chapter 9.

You can apply an ACL in many different ways. Applied to an interface, you can use it to accept or reject incoming or
outgoing packets based on protocol information such as source or destination address, port number, protocol
number, and so forth. Applied to a routing protocol, this same ACL might prevent the router from sharing information
about a particular route. And, applied to a route map, the ACL could just identify packets that need to be tagged or
treated differently.

Table 19-1 shows all of the current ranges for numbered access lists. Cisco periodically adds new ranges to this list,
so earlier IOS levels may not support all of these ACL types. Also bear in mind that if your IOS feature set doesn't
support a particular protocol such as IPX, XNS, or AppleTalk, the corresponding ACL type will also be unavailable.

Table 19-1. Numbered access list types

Numeric range

Access list type

1 - 99

Standard IP ACL

100 - 199

Extended IP ACL

200 - 299

Ethernet type code ACL

300 - 399

DECNET ACL

400 - 499

XNS ACL

This document is created with the unregistered version of CHM2PDF Pilot

500 - 599

Extended XNS ACL

600 - 699

AppleTalk ACL

700 - 799

48-bit MAC address ACL

800 - 899

IPX ACL

900 - 999

Extended IPX ACL

1000 - 1099

IPX service advertisement protocol

1100 - 1199

Extended 48-bit MAC address ACL

1200 - 1299

IPX NLSP ACL

1300 - 1999

Standard IP ACL, expanded range

2000 - 2699

Extended IP ACL, expanded range

2700 - 2999

SS7 (Voice) ACL

Clearly many of these ranges deal with protocols or technologies that are beyond the scope of this book. This book's
primary focus is on IP-based technologies, so this chapter will not discuss ACL types that are intended for use with
other protocols.

A named ACL is really just another way of writing either a standard or extended IP ACL. Named ACLs can make
your configuration files considerably easier to read. Some commands that use an ACL for pattern matching will not
accept named ACLs, but, for the most part, named ACLs are interchangeable with normal IP ACLs. Their chief
advantage is that you can nest other ACLs inside of a named ACL for greater flexibility.

Reflexive ACLs are more sophisticated objects that can contain temporary entries. Reflexive ACLs need to be
nested inside of named ACLs. A reflexive ACL has two parts that are generally nested in two different named ACLs.
One part watches for packets of a particular type using normal extended IP ACL syntax. As soon as the router sees
this packet, it activates a matching rule in another ACL. This allows you to do things like permitting inbound traffic of

This document is created with the unregistered version of CHM2PDF Pilot

a particular type only after the router sees an initial outbound packet of the matching type.

However, reflexive ACLs are somewhat limited in their scope because they are not able to read into the payloads of
IP packets. Many applications have more complicated behavior, such as using dynamically generated port numbers.
To handle this type of situation, Cisco has developed another type of ACL called Context-Based Access Control
(CBAC).

Like reflexive ACLs, CBAC works by turning on and off temporary access list rules. However, CBAC actively
monitors applications using a stateful inspection algorithm that allows the router to react to the application and
dynamically create new ACL rules. It can also watch for unusual application behavior and dynamically disable the
corresponding temporary ACL rules.

You should always remember that every ACL ends with an implicit deny all clause. This means that if you are
matching items (packets, for example) with an ACL, and the item fails to match any of the explicitly listed clauses of
the ACL and falls off the end, it is the same as if the item matched an explicit deny clause. For this reason, if you are
trying to block certain unwanted packets (for example), but want to allow all others to pass, you must remember to
include a permit all statement at the end of the ACL.

For more information on ACLs in general, refer to Cisco IOS Access Lists (O'Reilly).

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 19.1 Filtering by Source or Destination IP Address

19.1.1 Problem

You want to block packets to or from certain IP addresses.

19.1.2 Solution

You can use standard access lists to block packets from specified IP source addresses:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 19.2 Adding a Comment to an ACL

19.2.1 Problem

You want to add a human-readable comment to an ACL to help other engineers understand what you have done.

19.2.2 Solution

You can add a comment to any standard or extended IP ACL using the remark keyword:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 19.3 Filtering by Application

19.3.1 Problem

You want to filter access to certain applications.

19.3.2 Solution

Extended IP access lists can also filter based on application information such as protocol and port numbers:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 19.4 Filtering Based on TCP Header Flags

19.4.1 Problem

You want to filter based on the flag bits in the TCP header.

19.4.2 Solution

The following ACL blocks contain several illegal combinations of TCP header flags:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 19.5 Restricting TCP Session Direction

19.5.1 Problem

You want to filter TCP sessions so that only the client device may initiate the application.

19.5.2 Solution

You can use the established keyword to restrict which device is allowed to initiate the session. In the following
example, we want to allow the client device to telnet to the server, but not the other way around:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 19.6 Filtering Multiport Applications

19.6.1 Problem

You want to filter an application that uses more than one TCP or UDP port.

19.6.2 Solution

This example shows how to filter both FTP control and data sessions:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 19.7 Filtering Based on DSCP and TOS

19.7.1 Problem

You want to filter based on IP QoS information.

19.7.2 Solution

You can filter packets based on the contents of the Differentiated Services Control Point (DSCP) field using the dscp
keyword:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 19.8 Logging when an Access List Is Used

19.8.1 Problem

You want to know when the router invokes an access list.

19.8.2 Solution

Access lists can generate log messages. The following example will allow all packets to pass, but will record them:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 19.9 Logging TCP Sessions

19.9.1 Problem

You want to log the total number of TCP sessions.

19.9.2 Solution

You can configure the router to log the total number of TCP sessions, rather than just the number of packets, with the
following set of commands:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 19.10 Analyzing ACL Log Entries

19.10.1 Problem

You want to analyze the log entries created by logging ACLs.

19.10.2 Solution

The Perl script in Example 19-1 parses a router syslog file and builds a detailed report of packets that were denied
by logging ACLs. By default, the script will parse every ACL log message that it finds in the syslog file on a server.
You can also look for messages associated with a particular ACL by specifying the ACL number or name as a
command-line argument.

Example 19-1. logscan.pl
 #!/usr/local/bin/perl

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 19.11 Using Named and Reflexive Access Lists

19.11.1 Problem

You want to use a reflexive ACL, embedded in a named ACL.

19.11.2 Solution

A basic named ACL is similar to the numbered ACLs that we discussed earlier in this chapter. They can work like
either standard or extended IP ACLs:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 19.12 Dealing with Passive Mode FTP

19.12.1 Problem

You want to construct an ACL that can identify passive mode FTP sessions.

19.12.2 Solution

This example shows how to filter passive FTP control and data sessions:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 19.13 Using Context-Based Access Lists

19.13.1 Problem

You want to use your router as a firewall to perform advanced filtering functionality.

19.13.2 Solution

The following example shows how to configure the router to perform stateful inspection of TCP or UDP packets:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 20. DHCP

Introduction

Recipe 20.1. Using IP Helper Addresses for DHCP

Recipe 20.2. Limiting the Impact of IP Helper Addresses

Recipe 20.3. Using DHCP to Dynamically Configure Router IP Addresses

Recipe 20.4. Dynamically Allocating Client IP Addresses via DHCP

Recipe 20.5. Defining DHCP Configuration Options

Recipe 20.6. Defining DHCP Lease Periods

Recipe 20.7. Allocating Static IP Addresses with DHCP

Recipe 20.8. Configuring a DHCP Database Client

Recipe 20.9. Configuring Multiple DHCP Servers per Subnet

Recipe 20.10. Showing DHCP Status

Recipe 20.11. Debugging DHCP

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Dynamic Host Configuration Protocol (DHCP) is often used on networks to allow end devices to automatically
retrieve their network configuration when they first connect to the network. It basically expands on the earlier
Bootstrap Protocol (BOOTP) and uses the same UDP ports, numbers 67 and 68. The protocol itself is defined in
RFC 2131, and the configuration options are defined in RFC 2132.

The most common application for DHCP is to automatically set up IP addresses, netmasks, and default gateways for
end devices. However, the protocol can also configure many other options, such as DNS servers, domain names,
time zones, NTP servers, and many others. Some software vendors have even added their own configuration options
to automatically set up key applications on end devices.

DHCP makes it possible to give a minimal common configuration to all user workstations. You can simply plug the
device into the network at any point, and DHCP will take care of getting an IP address that will work at that location.
This minimizes errors due to manual configuration, centralizes control over configuration information, and greatly
reduces technician costs because anybody can connect a device to the network.

There are three distinct element types in a DHCP network. There must be a client and a server. If these two elements
are not on the same Layer 2 network, there also must be a proxy, which usually runs on the router. The proxy is
needed because the client device initially doesn't know its own IP address, so it must send out a Layer 2 broadcast
to find a server that has this information. The router must relay these broadcasts to the DHCP server, then forward
the responses back to the correct Layer 2 address so that the right end device gets the right configuration information.

Historically, the router's only role in BOOTP or DHCP was this proxy function. However, Cisco has recently added
both DHCP client and server functionality. This chapter will show configuration examples for all three of these
functions, but many of the recipes will focus on complex server configurations.

A DHCP exchange starts with a client device, such as an end user workstation. Typically, this device will boot and
connect to the network with no preconfigured network information. It doesn't know its IP address, the address of its
router, its subnet, or netmask. It doesn't even know the address of the server that will provide these pieces of
information. The only thing it can do is send out a UDP broadcast packet looking for a server.

Most DHCP networks of any size include two or more DHCP servers for redundancy. The end devices typically just
need to talk to a DHCP server at startup time, but they will not work at all without it. So redundancy is important.
This also means that it is not unusual for an end device to see several responses to a DHCP request. It will generally
just use the first response. However, this also underscores the importance of ensuring that all of the DHCP servers
distribute the same information. Their databases of end device configuration parameters must be synchronized.

The end device requests configuration information from one of the servers. It must specify exactly what options it
requires. The server does not need to respond to all of the requested options, but it cannot offer additional
unrequested information to the client, even if it has additional information in its database. This is an important detail to
remember—it can be very confusing when an end device has some manually configured options that are not replaced
by the information on the server.

This document is created with the unregistered version of CHM2PDF Pilot

Since duplicate IP addresses can cause serious problems on a network, most DHCP servers track address conflicts.
They do this by attempting to ping each IP address before telling an end device that it is safe to use the address.
Many DHCP clients will also double-check that the address is not already in use by sending an ARP request before
using it. However, neither of these checks is mandatory, and some DHCP clients and servers do not check before
using an address.

One of the important features of DHCP is the ability to allocate IP addresses for a configurable period of time, called
the lease period. If a client device wants to keep its IP address for longer than this period, it must renew the lease
before it expires. Clients are free to renew their leases as often as they like.

The server can allocate IP addresses from a pool on a first-come, first-served basis, or it can associate IP addresses
with end device MAC addresses to ensure that a particular client always receives the same address.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 20.1 Using IP Helper Addresses for DHCP

20.1.1 Problem

You want to configure your router to pass DHCP requests from local clients to a centralized DHCP server.

20.1.2 Solution

The ip helper-address configuration command allows the router to forward local DHCP requests to one or more
centralized DHCP servers:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 20.2 Limiting the Impact of IP Helper Addresses

20.2.1 Problem

After configuring your router to use IP helper addresses, you suffer from high link utilization or high CPU utilization on
the DHCP server.

20.2.2 Solution

The ip helper-address command implicitly enables forwarding of several different kinds of UDP broadcasts. You
can prevent the router from forwarding the unwanted types of broadcasts with the no ip forward-protocol udp
configuration command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 20.3 Using DHCP to Dynamically Configure Router IP
Addresses

20.3.1 Problem

You want the router to dynamically obtain its IP addressing information.

20.3.2 Solution

The ip address dhcp configuration command allows the router to dynamically obtain the address information for an
interface:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 20.4 Dynamically Allocating Client IP Addresses via DHCP

20.4.1 Problem

You want to configure your router to be a DHCP server and allocate dynamic IP addresses to client workstations.

20.4.2 Solution

The following set of configuration commands allows the router to dynamically allocate IP addresses to client
workstations:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 20.5 Defining DHCP Configuration Options

20.5.1 Problem

You want to dynamically deliver configuration parameters to client workstations.

20.5.2 Solution

You can configure a wide variety of DHCP parameters for configuring client workstations:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 20.6 Defining DHCP Lease Periods

20.6.1 Problem

You want to change the default lease period.

20.6.2 Solution

To modify the default DHCP lease time for a pool of IP addresses, use the lease configuration command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 20.7 Allocating Static IP Addresses with DHCP

20.7.1 Problem

You want to ensure that your router assigns the same IP address to a particular device every time it connects.

20.7.2 Solution

The following commands ensure that the router assigns the same IP address to a device each time it requests one:
 Router1(config)#ip dhcp pool IAN

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 20.8 Configuring a DHCP Database Client

20.8.1 Problem

You want to back up your DHCP database of address assignments to another device so that you won't lose it if the
router reloads.

20.8.2 Solution

You can ensure that your DHCP address assignments are not lost when a router reloads by configuring the router to
periodically copy its DHCP database to a remote server.

The first example configures a router to use FTP to copy the DHCP database to a remote server:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 20.9 Configuring Multiple DHCP Servers per Subnet

20.9.1 Problem

You want to configure multiple routers to act as DHCP servers for the same subnet to ensure availability.

20.9.2 Solution

You can configure multiple routers to act as DHCP servers for a single subnet by ensuring that they don't use the
same pool of addresses.

Router1:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 20.10 Showing DHCP Status

20.10.1 Problem

You want to display the status of the DHCP server functions on the router.

20.10.2 Solution

To display the IP address bindings and their associated leases, use this command:
 Router1#show ip dhcp binding

The following command displays any IP address conflicts that the router has detected in the DHCP address pool:
 Router1#show ip dhcp conflict

You can view the status of remote database backups with this command:
 Router1#show ip dhcp database

And you can see the global DHCP server statistics like this:
 Router1#show ip dhcp server statistics
20.10.3 Discussion

To display the status of the DHCP service, use the show ip dhcp EXEC command. If you add the keyword binding,
this command displays the current DHCP bindings, which include the assigned IP addresses, the associated client
MAC addresses, and the lease expiration time:
 Router1#show ip dhcp binding

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 20.11 Debugging DHCP

20.11.1 Problem

You want to debug a DHCP problem.

20.11.2 Solution

To debug the server events, use the following EXEC command:
 Router1#debug ip dhcp server events

The following command will allow you to monitor the actual DHCP-related packets being transmitted and received
by the router:
 Router1#debug ip dhcp server packet
20.11.3 Discussion

The following debug capture shows a router performing normal housekeeping duties such as updating its address
pools, checking for expired leases, assigning new leases, and revoking expired leases:
 Router1#debug ip dhcp server events

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 21. NAT

Introduction

Recipe 21.1. Configuring Basic NAT Functionality

Recipe 21.2. Allocating External Addresses Dynamically

Recipe 21.3. Allocating External Addresses Statically

Recipe 21.4. Translating Some Addresses Statically and Others Dynamically

Recipe 21.5. Translating in Both Directions Simultaneously

Recipe 21.6. Rewriting the Network Prefix

Recipe 21.7. Adjusting NAT Timers

Recipe 21.8. Changing TCP Ports for FTP

Recipe 21.9. Checking NAT Status

Recipe 21.10. Debugging NAT

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Network Address Translation (NAT) was first described in RFC 1631 in 1994. The authors of that document were
trying to solve the imminent problem of running out of IPv4 addresses. They proposed a simple but brilliant solution:
allow devices on the inside of a network to use the standard pool of unregistered IP addresses currently defined in
RFC 1918. The router or firewall at the boundary between the internal private network and the external public
network could then use software to rewrite the internal IP addresses of every packet, replacing them with valid
registered addresses.

There are four kinds of addresses: inside local, inside global, outside local, and outside global. Inside and outside
are relative terms if you're just connecting two private networks. But if you are connecting a private network to the
public Internet, the Internet is considered the outside. A local address is generally the private address, while the
global address is the globally unique public address.

To help make these terms more clear, suppose you are connecting a network that uses RFC 1918 private addresses
to the public Internet. Inside your network you have private addresses, such as 192.168.1.0/24. These are the inside
local addresses. NAT will translate these addresses to globally unique registered addresses, which are also the inside
global addresses. The addresses on the public Internet are outside global addresses. These external network
addresses are all registered in this case, so there is no need to translate them. If translation was needed, an outside
global address would be changed to an outside local address.

To put this another way, the address that internal devices use to communicate with other internal devices is the inside
local address. The address that internal devices uses to communicate with external devices is the outside local
address. The address that external devices uses to communicate with internal devices is the inside global address.
Finally, external devices communicate with one another using outside global addresses.

NAT makes it possible to have a huge internal network with thousands of local addresses represented by a handful
(or perhaps even just one) global address. This is why NAT is often credited with alleviating the address shortage
problem. But it solves this problem only if most people who use it have more local than global addresses.

In practice, NAT offers a huge range of possibilities. You can map local addresses uniquely to individual global
addresses. You can share one global address among several local addresses. You can allocate global addresses from
a pool as they are requested, or have a single global address and map all local addresses to this one address. You
can even define a combination of these different alternatives.

When a device sends a packet out from the private to the public network, the translator replaces the local source
address with a registered address, then routes the packet. For an inbound packet, the translator replaces the global
address with the local address and routes the packet into the internal network. The translator has a much more
difficult job with inbound packets than outbound, because it has to figure out which internal device to send the packet
to. Since many internal devices may be using the same global address, the translator has to keep a state table of all of
the devices that send or receive packets to or from the external network.

Suppose, for example, that two internal users are both using HTTP to view information on the public network. The

This document is created with the unregistered version of CHM2PDF Pilot

translator must be able to determine which packets are intended for which internal device. It's not sufficient to simply
look at the external device's IP address—both of these users could be looking at the same web page. They would
both wind up with severely scrambled screens if the translator couldn't tell which packets to send to which internal
user.

This particular example is made somewhat easier by the fact that HTTP uses TCP. Because TCP is a
connection-based protocol, well-defined TCP session initiation and termination helps the translator to sort out the
inbound flows. In this case, Cisco's NAT implementation uses Port Address Translation (PAT), which means that the
router rewrites the source port numbers, and uses the new values as tags to distinguish between the two flows.
Because UDP also uses port numbers, the same PAT technique also works here, although the router doesn't keep
the translation table entries active for the same length of time.

ICMP, on the other hand, is considerably more difficult for NAT to keep straight. For example, if two internal users
both ping the same external site at the same time, the translator has to assume that it will receive the responses in the
same order that they were sent. Fortunately, this rarely causes real problems in production networks. But it is worth
remembering that, whether it can use PAT or not, NAT requires the router to keep track of a lot of state information
that routers don't usually care about.

Further, because IP addresses and port numbers are included in both IP and TCP checksums, the translator must
recalculate these checksum values for every packet. So NAT always consumes more CPU and memory on the
router or firewall that it runs on. This resource usage increases rapidly with both the number of packets and the
number of different flows.

The other important thing to remember about NAT is that some protocols include IP address information in the
payload of the packet, as well as in the IP header. For example, the ubiquitous FTP protocol has a PORT command
that contains an IP address encoded in ASCII. In this case, the FTP protocol is well understood and NAT
implementations can look out for the PORT command. But in other, less popular protocols, strange problems can
occur. And, if a server happens to run FTP on a nonstandard TCP port, you must tell NAT about the change so that
it can rewrite the payload addresses.

SNMP also includes IP addresses in packet payloads. For example, IP address information is part of the standard
interface MIB because the address is an important piece of information about the interface. However, rewriting
addresses in the payloads of SNMP packets is a much more difficult problem than finding the IP address for FTP,
because the address could be anywhere in the payload. It is also possible for the addresses in the payload to refer to
different interfaces than the address in the header. And, to make the problem even more difficult, there is no common
standard format for IP addresses in SNMP packets. They are sometimes transmitted as dotted decimal ASCII
strings, as packed hex bytes, or in a variety of other formats depending on the specific MIB. Consequently, Cisco
routers do not attempt to rewrite IP addresses in the payloads of SNMP packets.

We have also seen custom-built applications that make life very hard for NAT by encoding IP addresses and port
numbers in the data segment of a packet, then using this information to attempt new connections. It can be very hard
to get NAT to work in cases like this. Often the only workaround is to encapsulate the ill-behaved application in a
tunnel.

Top

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 21.1 Configuring Basic NAT Functionality

21.1.1 Problem

You want to set up Network Address Translation on your router.

21.1.2 Solution

In the simplest NAT configuration, all of your internal devices use the same external global address as the router's
external interface:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 21.2 Allocating External Addresses Dynamically

21.2.1 Problem

You want to dynamically select addresses from a pool.

21.2.2 Solution

You can configure the router to automatically select global addresses from a pool as they are required:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 21.3 Allocating External Addresses Statically

21.3.1 Problem

You want to translate specific internal IP addresses to specific external addresses.

21.3.2 Solution

For some applications, you need each internal (inside local) address to always translate to the same external (inside
global) address. This is particularly true if you need inbound connections from the outside network to always reach a
particular internal device, such as a web or email server:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 21.4 Translating Some Addresses Statically and Others
Dynamically

21.4.1 Problem

You want certain hosts to have static address translation properties and all others to use dynamic translation.

21.4.2 Solution

In some cases, you might need to use a combination of the two approaches. Some internal devices will always
translate to specific external addresses, but others will use a dynamic pool. This is often the case when you have a
few internal servers that need to be accessed from outside of the network, but the other devices will make only
outbound connections:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 21.5 Translating in Both Directions Simultaneously

21.5.1 Problem

You want to translate both internal and external addresses.

21.5.2 Solution

In some cases, you might need to translate IP addresses on both sides of your router:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 21.6 Rewriting the Network Prefix

21.6.1 Problem

You want to rewrite all of the addresses in a particular range by simply replacing the prefix with one of equal length.

21.6.2 Solution

Sometimes you need to connect your network to another network that uses an unregistered range, such as
172.16.0.0/16. However, if you already use this range in your network, the easiest thing to do is to simply replace
this prefix with another one that doesn't have a conflict, such as 172.17.0.0/16:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 21.7 Adjusting NAT Timers

21.7.1 Problem

You want to change the length of time that NAT entries remain active.

21.7.2 Solution

The router will keep NAT entries in the translation table for a configurable length of time. For TCP connections, the
default timeout period is 86,400 seconds, or 24 hours. Because UDP is not connection-based, the default timeout
period is much shorter: only 300 seconds (5 minutes). The router will remove translation table entries for DNS
queries after only 60 seconds.

You can adjust these parameters using the ip nat translation command, which accepts arguments in seconds:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 21.8 Changing TCP Ports for FTP

21.8.1 Problem

You have an FTP server using a non-standard TCP port number.

21.8.2 Solution

The FTP protocol includes IP address information in the packet payload. Normally, Cisco's NAT implementation
rewrites IP address information in the payloads of FTP packets by looking in every packet sent on TCP port 21,
which is the port that FTP uses to pass session control information by default. So when an FTP server uses a
nonstandard TCP port number for session control, you must configure the NAT router to expect FTP packets on the
new port number:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 21.9 Checking NAT Status

21.9.1 Problem

You want to see the current NAT information.

21.9.2 Solution

There are several useful EXEC commands for checking the status of NAT on a router. You can view the NAT
translation table using the following command:
 Router#show ip nat translation

You can clear all or part of the NAT translation table by specifying either an asterisk (*) or a particular address. To
clear a specific entry, you must specify either the global address for a device that is inside, or a local address for a
device that is outside:
 Router#clear ip nat translation *

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 21.10 Debugging NAT

21.10.1 Problem

You want to debug a NAT problem.

21.10.2 Solution

Cisco routers include a simple but useful debug facility for NAT. The basic form of the command is debug ip nat:
 Router#debug ip nat

You can also add the detailed keyword to this command to get more information on each NAT event:
 Router#debug ip nat detailed

It is often useful to use an access list with the debug command. You can do this by simply specifying the number of
the access list. This will allow you to look only at NAT events for particular IP addresses that are permitted by the
access list:
 Router#debug ip nat 15

You can also combine an access list with the detailed keyword for more focused debugging:
 Router#debug ip nat 15 detailed
21.10.3 Discussion

The following shows some typical log entries:
 Router#terminal monitor

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 22. Hot Standby Router Protocol

Introduction

Recipe 22.1. Configuring Basic HSRP Functionality

Recipe 22.2. Using HSRP Preempt

Recipe 22.3. Making HSRP React to Problems on Other Interfaces

Recipe 22.4. Load Balancing with HSRP

Recipe 22.5. Redirecting ICMP with HSRP

Recipe 22.6. Manipulating HSRP Timers

Recipe 22.7. Using HSRP on a Token Ring Network

Recipe 22.8. HSRP SNMP Support

Recipe 22.9. Increasing HSRP Security

Recipe 22.10. Showing HSRP State Information

Recipe 22.11. Debugging HSRP

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Hot Standby Router Protocol (HSRP) is a Cisco proprietary standard that allows a router on a LAN segment to
automatically take over if another one fails. It was developed to solve a common problem in shared networks such as
Ethernet or Token Ring. The devices on these shared network segments are usually configured with a single default
gateway address that points to the router that connects to the rest of the network. The problem is that even if there is
a second router on the segment that is also capable of being the default gateway, the end devices don't know about
it. Therefore, if the first default gateway router fails, the network stops working.

Many methods for addressing this problem have come and gone over the years. The most obvious and most
seriously flawed solution is to have the end users reconfigure the default gateway address in their workstations. This is
a terrible solution for several reasons. There is a large chance of typographical errors: the conversion is slow,
laborious, and often requires a reboot of the workstation; it relies on users noticing the problem in a timely manner,
and it is unlikely that anyone will bother changing the address back when the original router recovers; it also requires
that a human is handy to make the change, but devices such as printers and servers don't usually have anyone sitting
beside them when problems appear.

A slightly better solution that many organizations have used is to run a dynamic routing protocol such as RIP or
OSPF directly on the servers and workstations. Unix-based operating systems have access to good routing protocol
implementations such as the routed and gated programs. However, many popular desktop and server operating
systems do not support these protocols. Even if every device in the network could run a routing protocol, this is not a
very good solution to the problem for several reasons. Routing protocols tend not to converge well when the number
of devices gets too large. So this technique would, at the very least, require a major network redesign. It is also a
generally bad idea to let end devices affect the global routing tables throughout the network. If one of these devices is
not configured properly, it could cause serious routing problems. And, more philosophically, it is a good principle of
network design to keep network functions on network devices. Workstations and servers already have enough to do
without having to perform a router's job as well.

ICMP Router Discovery Protocol (IRDP), which is described in RFC 1256, represents still another interesting idea
for allowing end devices to find a new router when their default gateway fails. This protocol requires routers to
periodically send multicast "hello" messages to the LAN segment. End devices listen for these messages and use them
to build their internal routing tables. If an end device doesn't hear these hello messages for a while, it assumes that the
router must have failed. The end device then sends a multicast query looking for a new router to take over. Again,
this method requires special software on the end devices. Few devices support IRDP, and it has never enjoyed
particularly wide acceptance.

Cisco routers do support IRDP; enable it using the ip irdp interface command:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 22.1 Configuring Basic HSRP Functionality

22.1.1 Problem

You want a backup router to take over the MAC and IP addresses of a primary router if the primary fails.

22.1.2 Solution

Figure 22-1 represents a typical network design for use with HSRP on an Ethernet type LAN segment (including
FastEthernet, Gigabit Ethernet and 10-Gigabit Ethernet). There are two routers called Router1 and Router2, which
have the IP addresses 172.22.1.3 and 172.22.1.2, respectively. When both routers are available, we want Router1
to handle all of the traffic using the virtual IP address 172.22.1.1.

Configure the first router as follows:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 22.2 Using HSRP Preempt

22.2.1 Problem

You want to ensure that a particular router is always selected as the "active" HSRP router whenever it is up and
functioning.

22.2.2 Solution

You can ensure that a particular router is always selected as the HSRP active router if it is available. On the router
that you wish to make your primary active HSRP router, you need to set a higher priority level and use the standby
preempt command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 22.3 Making HSRP React to Problems on Other Interfaces

22.3.1 Problem

You want HSRP to switch to the backup router when another port on the primary router becomes unavailable.

22.3.2 Solution

The standby track configuration command reduces the priority of an active HSRP router into a standby mode when
one of its interfaces becomes unavailable. If the priority drops far enough, another router will take over:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 22.4 Load Balancing with HSRP

22.4.1 Problem

You want to load balance your traffic between two (or more) HSRP routers.

22.4.2 Solution

You can configure HSRP so that both routers are always in use if they are available. This allows you to use your
network resources more efficiently, but it is slightly more complicated to configure.

Configure the first router as follows, with two HSRP groups:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 22.5 Redirecting ICMP with HSRP

22.5.1 Problem

You want to enable ICMP redirects with HSRP.

22.5.2 Solution

In older IOS releases, when you enable HSRP on an interface, the router will automatically disable ICMP
redirection. However, starting with IOS Version 12.1(3)T, Cisco has changed how ICMP redirection works with
HSRP, and it is now enabled by default.

You can explicitly enable ICMP redirects on HSRP-enabled interfaces with the following commands:
 Router2#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 22.6 Manipulating HSRP Timers

22.6.1 Problem

You want to decrease the amount of time it takes for the backup router to take over after the primary router fails.

22.6.2 Solution

You can configure HSRP-enabled routers to recover more quickly after the primary HRSP router becomes
unavailable with the standby timers configuration command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 22.7 Using HSRP on a Token Ring Network

22.7.1 Problem

You want to configure HSRP on a Token Ring network.

22.7.2 Solution

You can use HSRP on a Token Ring LAN exactly the same as in Recipe 22.1 if the only protocol on the segment is
IP. However, if you have any other protocols (particularly if the ring uses any source-route bridging), you must use a
slightly different configuration:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 22.8 HSRP SNMP Support

22.8.1 Problem

You want to enable HSRP SNMP traps.

22.8.2 Solution

Cisco has developed an HSRP SNMP MIB to help manage routers using this feature. You can configure your router
to send an SNMP trap every time the routers make an HSRP state change:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 22.9 Increasing HSRP Security

22.9.1 Problem

You want to increase the security of HSRP between two (or more) routers.

22.9.2 Solution

You can configure HSRP to use password authentication with the following commands:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 22.10 Showing HSRP State Information

22.10.1 Problem

You want to see current HSRP information, such as which router is primary.

22.10.2 Solution

To view the HSRP information, use the following EXEC command:
 Router2#show standby

You can view the HSRP information for a specific interface with the following EXEC command:
 Router2#show standby FastEthernet 1/0

Use the keyword brief to show an overview of HSRP information:
 Router2#show standby brief
22.10.3 Discussion

The basic show standby command without any additional keywords displays all of the HSRP information for all
groups and all interfaces on the router:
 Router2#show standby

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 22.11 Debugging HSRP

22.11.1 Problem

You want to debug an HSRP problem.

22.11.2 Solution

To debug all HSRP error events, use the following command:
 Router2#debug standby errors

The events keyword will display information about HSRP events:
 Router2#debug standby events

With the packets keyword, you can look at the contents of all HSRP packets:
 Router2#debug standby packets

You can use the terse keyword to see a short form of all HSRP errors, events, and packets:
 Router2#debug standby terse
22.11.3 Discussion

HSRP is not a very complex protocol, and it is relatively simple to configure, so network engineers generally don't
find that they need the sophisticated debugging tools that are available with other protocols. Consequently, HSRP
debugging facilities were relatively limited until IOS level 12.1(0.2), when the enhanced debugging described here
was introduced. However, these features can be useful when you are faced with strange HSRP problems such as
general instability or multiple active routers.

We don't recommend starting with a packet-level debug for anything because it can easily overwhelm the router. In
the case of HSRP, which should only send a hello packet every three seconds by default, this shouldn't be quite as
dangerous as for many other protocols.

The debug standby terse command is probably the most useful option because it gives a short form output of all
HSRP errors, events, and packets:
 Router1#debug standby terse

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 23. IP Multicast

Introduction

Recipe 23.1. Configuring Basic Multicast Functionality with PIM-DM

Recipe 23.2. Routing Multicast Traffic with PIMSM and BSR

Recipe 23.3. Routing Multicast Traffic with PIM-SM and Auto-RP

Recipe 23.4. Configuring Routing for a Low Frequency Multicast Application

Recipe 23.5. Configuring CGMP

Recipe 23.6. Static Multicast Routes and Group Memberships

Recipe 23.7. Routing Multicast Traffic with MOSPF

Recipe 23.8. Routing Multicast Traffic with DVMRP

Recipe 23.9. DVMRP Tunnels

Recipe 23.10. Controlling Multicast Scope with TTL

Recipe 23.11. Using Administratively Scoped Addressing

Recipe 23.12. Exchanging Multicast Routing Information with MBGP

Recipe 23.13. Using MSDP to Discover External Sources

Recipe 23.14. Converting Broadcasts to Multicasts

Recipe 23.15. Showing Multicast Status

Recipe 23.16. Debugging Multicast Routing

Top

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

Multicast routing differs from unicast routing in several ways. The most important differences are in the ways that
multicast routers use source and destination addresses. A multicast packet is addressed to a special IP address
representing a group of devices that can be scattered anywhere throughout a network. Since the destinations can be
anywhere, the only reliable way to eliminate loops in multicast routing is to look at the reverse path back to the
source. So, while unicast routing cares about where the packet is going, multicast routing also needs to know where it
came from.

For this reason, multicast routing protocols such as Protocol Independent Multicast (PIM) always work with the
source address and destination group simultaneously. The usual notation for a multicast route is (Source, Group), as
opposed to the unicast case, in which routes are defined by the destination address alone. We have already
mentioned that this is necessary for avoiding loops, but the router also needs to keep track of both source and group
addresses in each multicast routing table entry because there could be several sources for the same group.

For example, in Chapter 14 we discussed how a central device can use NTP to send time synchronization
information as a multicast router. We also explained why it was important to have more than one NTP server. So,
even in a simple multicast example like this it is quite likely that the routers will need to forward packets to the same
set of end devices from two sources that may be on different network segments. The group address alone doesn't tell
you enough about how to forward packets belonging to this group.

When you look at the multicast routing table with the show ip mroute command, you will see not only (Source,
Group) pairs such as (192.168.15.35, 239.5.5.55), but also pairs that look like (*, 239.5.5.55). This means that the
source is unspecified. Cisco routers organize their multicast routing tables with a parent (*, Group) for each group,
and any number of (Source, Group) pairs under it. If there is a (*, Group), but no (Source, Group) entries for a
group, then that just means that the router knows of group members but doesn't yet know where to expect this
multicast traffic from.

Each of these (Source, Group) entries represents a Shortest Path Tree (SPT) that leads to the source of the
multicast traffic. In sparse mode multicast routing, the root of the tree could actually be a central Rendezvous Point
(RP) router, rather than the actual traffic source. Because each router must know about the path back to the source
or RP, the term Reverse Path Forwarding (RPF) is often used to describe the process of building the SPT.

Two important elements are required for a multicast network to work. The first we've already mentioned: you need a
way to route multicast packets from the source to all of the various destinations in the group. The other critical
element is that the multicast network has to provide a way for end devices to subscribe to a multicast group so that
they can receive the data. The network uses the Internet Group Management Protocol (IGMP) to manage group
subscriptions.

IGMP and CGMP

IGMP functions mainly at Layer 3. Individual end devices use IGMP to announce that they wish to join a particular
multicast group. The IGMP request is picked up by a router that attempts to fulfill the request by forwarding the
multicast data stream to the network containing this device. The IGMP protocol is in its second version, which is

This document is created with the unregistered version of CHM2PDF Pilot

defined in RFC 2236. A third version is currently in the draft stages.

What IGMP does is relatively simple in concept. It provides a method for end devices to join and leave multicast
groups. Here is the output of tcpdump showing the device 192.168.1.104 joining the group 239.5.5.55:
 17:10:16.397055 192.168.1.104 > 239.5.5.55: igmp nreport 239.5.5.55 (DF) [ttl 1]

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.1 Configuring Basic Multicast Functionality with
PIM-DM

23.1.1 Problem

You want to pass multicast traffic through the router.

23.1.2 Solution

In a small network with few routers and relatively light multicast application bandwidth requirements, the easiest way
to implement multicast routing is to use PIM-DM. This example shows the configurations for two routers that are
connected through a serial connection, both with FastEthernet interfaces to represent the LAN connections. It is
important to enable multicast routing on all interfaces that connect to other multicast-enabled routers or to multicast
user or server segments. The first router looks like this:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.2 Routing Multicast Traffic with PIMSM and BSR

23.2.1 Problem

You want to enable routing of multicasts using sparse mode for better efficiency, and use BSR for distributing RP
information.

23.2.2 Solution

We've already discussed how PIM-SM requires a Rendezvous Point router. The most reliable way to achieve this is
to have the network automatically discover the RP. This way, if the RP fails, another can automatically take over for
it. We recommend using the Bootstrap Router (BSR) mechanism to dynamically distribute RP information.

There are two different types of router configurations for this type of network. Most of the routers will support end
devices, both group members and servers. But a small number are configured to act as candidate RPs and candidate
BSRs. In the example, we show the RP and BSR configuration in the same router. This isn't actually necessary, but it
is convenient.

Router1 is an example of a "normal" multicast router. It forwards multicasts, takes part in PIM-SM, and may support
group members or multicast servers as required:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.3 Routing Multicast Traffic with PIM-SM and Auto-RP

23.3.1 Problem

You want to allow routing of multicasts using sparse mode, and use Auto-RP for distributing RP information.

23.3.2 Solution

This recipe accomplishes the same basic tasks as Recipe 23.2, but using a different method. If you are unfamiliar with
PIM-SM, please read that recipe first. There are two different types of router configurations for Auto-RP
configuration, just as there are for BSR. Router1 represents a regular multicast-enabled router anywhere in the
network. This router supports end devices as group members or servers, as well as routing multicast traffic for other
routers:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.4 Configuring Routing for a Low Frequency Multicast
Application

23.4.1 Problem

You have a multicast application where the servers send packets less frequently than the standard PIM timeout
intervals.

23.4.2 Solution

PIM-SM is best suited to this type of application. The configurations of the RP and BSR or Auto-RP routers for this
example are identical to those shown in Recipe 23.2 and Recipe 23.3. The differences appear on the other routers in
the network. So this recipe shows only the configurations for these other routers:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.5 Configuring CGMP

23.5.1 Problem

You want the router to use CGMP to communicate with a Catalyst switch.

23.5.2 Solution

When you enable multicast routing and turn on PIM on an interface, IGMP is enabled by default. However, you must
explicitly enable CGMP on the router if you want your Catalyst switch to take advantage of this efficient way of
handling group membership:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.6 Static Multicast Routes and Group Memberships

23.6.1 Problem

You want to override the dynamic multicast routing and group membership with static entries.

23.6.2 Solution

By default, PIM will use the same dynamic routing table learned by the unicast routing protocol. However, in some
cases you don't want to use these routes. For example, you might have to send multicast traffic through a tunnel to
bypass a section of network that doesn't support multicast routing. In this case, the unicast routing table is clearly the
wrong path for multicast traffic. So you need to specify a different route for multicast traffic to use:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.7 Routing Multicast Traffic with MOSPF

23.7.1 Problem

You want to distribute your multicast routing tables with MOSPF.

23.7.2 Solution

Unfortunately, Cisco does not support MOSPF. As mentioned in the introduction to this chapter, MOSPF is a set of
multicast extensions to OSPF that uses LSA Type 6. By default, when a Cisco router receives a Type 6 LSA packet
it will generate a "%OSPF-4-BADLSATYPE" error message. To avoid this error message, you can configure your
routers to ignore Type 6 LSA packets:
 Router#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.8 Routing Multicast Traffic with DVMRP

23.8.1 Problem

You want to route multicast traffic using the DVMRP protocol.

23.8.2 Solution

Cisco routers support DVMRP only as a gateway to PIM. So the configuration is remarkably similar to the PIM
configuration. The key difference is in the ip dvmrp unicast-routing command, which tells the router to use the
DVMRP multicast routing table instead of the usual PIM choice of the unicast routing table:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.9 DVMRP Tunnels

23.9.1 Problem

You want to create a DVMRP tunnel to bypass a section of network that doesn't support multicast routing.

23.9.2 Solution

You can create a DVMRP tunnel from a Cisco router to a non-Cisco DVMRP device using the special DVMRP
tunnel mode. This allows you to pass multicast traffic through a section of network that doesn't support multicast
routing:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.10 Controlling Multicast Scope with TTL

23.10.1 Problem

You want to ensure that your multicast traffic remains confined to a small part of the network.

23.10.2 Solution

You can define a TTL threshold value for each interface on a router. The ttl-threshold command instructs the router
to drop any multicast packets that have a TTL value less than or equal to the specified value. The router will receive
packets on this interface normally. This command affects only the transmission of multicast packets:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.11 Using Administratively Scoped Addressing

23.11.1 Problem

You want to use RFC 2365 administratively scoped multicast addressing to control how multicast traffic is distributed
through your network.

23.11.2 Solution

To configure regions of multicast scope using addressing rather than TTL, use the ip multicast boundary interface
command:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.12 Exchanging Multicast Routing Information with MBGP

23.12.1 Problem

You want to exchange multicast routing information between two networks using MBGP.

23.12.2 Solution

Before setting up MBGP, you should set up multicast routing on the Autonomous System Boundary Router (ASBR)
and configure it to block multicast traffic that you know is intended only for the local network:
 Router-ASBR1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.13 Using MSDP to Discover External Sources

23.13.1 Problem

You want to use MSDP to discover information about multicast sources in other ASes.

23.13.2 Solution

The typical way to configure MSDP involves first selecting one of your MBGP routers as the RP for your internal
network. Then you set up an MSDP peer relationship with the RP in another AS, which is usually an MBGP peer
router in the next domain. The following configuration includes the commands required to configure the router as an
RP for the internal network using BSR, as discussed in Recipe 23.2; configuration to prevent local multicast traffic
from leaking into the neighboring network, as discussed in Recipe 23.10 and Recipe 23.11; and BGP configuration,
as discussed in Recipe 23.12:
 Router-ASBR1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.14 Converting Broadcasts to Multicasts

23.14.1 Problem

You have a broadcast-based application that you want to treat as multicast so that it can cross the network.

23.14.2 Solution

Cisco has a special feature called an IP Multicast Helper, which you can use to convert broadcast packets to
multicast packets. Then you can use PIM to send these packets throughout the network. At the last-hop routers you
can then convert the multicast packets back to broadcast. This is useful for older broadcast-based applications that
do not support multicast transmission.

Router1 is the first-hop router, or the one closest to the broadcast source, which is on the interface FastEthernet0/0.
This converts broadcast packets with UDP port 3535 received on this interface into multicast packets in group
239.3.5.35:
 Router1#configure terminal

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.15 Showing Multicast Status

23.15.1 Problem

You want to view the current status of multicast protocols on your router.

23.15.2 Solution

There are several useful commands for checking the status of multicast configuration and protocols. You can see
what multicast routes pass through a router with the EXEC command:
 Router#show ip mroute

There are two useful variants of this command. The first reports on forwarding statistics for each multicast group:
 Router#show ip mroute count

The second reports only on the groups that are currently active:
 Router#show ip mroute active

You can look at statistics on group membership using the following command:
 Router#show ip igmp groups

Use the interface keyword to look at the IGMP information in more detail:
 Router#show ip igmp interface

There are four useful commands for viewing PIM information. The first shows information about PIM neighbor
relationships:
 Router#show ip pim neighbor

The second command shows information about the PIM configuration on different interfaces:
 Router#show ip pim interface

This command shows information about PIM-SM RPs:
 Router#show ip pim rp

And, if you are using the Bootstrap Router (PIM Version 2) technique for distributing RP information, you will want
to use this command:
 Router#show ip pim bsr-router

This document is created with the unregistered version of CHM2PDF Pilot

Recipe 23.16 Debugging Multicast Routing

23.16.1 Problem

You want to use debug functions to isolate a problem with multicast forwarding.

23.16.2 Solution

Cisco routers have several useful debug features that you can use to isolate multicast problems. The first is a general
command that shows how the router maintains its multicast routing tables when it hears from sources and group
members:
 Router#debug ip mrouting

You can watch the actual multicast packets for a particular group using the following command:
 Router#debug ip mpacket 239.5.5.55

The other commonly useful multicast debug command looks at IGMP information:
 Router#debug ip igmp
23.16.3 Discussion

As with all debugging commands, you need to be extremely careful because sometimes the sheer volume of the
output can overwhelm the router. It is usually wise to try these commands one at a time, and disable all debugging
with the command undebug all before trying the next command.

The first debug command, debug ip mrouting, shows how the router creates, updates, and deletes multicast routing
information:
 Router#terminal monitor

This document is created with the unregistered version of CHM2PDF Pilot

Appendix A. External Software Packages

This appendix discusses several of the external software packages discussed throughout the book. Because this is
primarily a Cisco book, and we have not focused on any particular software products, this section is restricted to
freely distributed software. There are also commercial products that fulfill the same functions as some of these
packages (particularly for SNMP) that you may prefer to use.

Top

This document is created with the unregistered version of CHM2PDF Pilot

A.1 Perl

According to the Perl web site:

Perl is a high-level programming language with an eclectic heritage written by Larry Wall and a cast of thousands. It
derives from the ubiquitous C programming language and to a lesser extent from sed, awk, the Unix shell, and at least
a dozen other tools and languages. Perl's process, file, and text manipulation facilities make it particularly well-suited
for tasks involving quick prototyping, system utilities, software tools, system management tasks, database access,
graphical programming, networking, and world wide web programming.

Many of the scripts written in Perl these days tend to involve dynamically generating web pages. But all of the scripts
in this book use Perl at the command line of either a Unix or Windows computer.

We frequently use Perl for scripting network administration functions because it is an extremely powerful and flexible
language, particularly for requirements involving pattern matching. This makes it perfect for scanning log files, as well
as for spawning dynamic queries and formatting the output into a useful report.

Perl is available for both Unix and Windows systems. This is important because, while the engineers who run most of
the world's larger networks use Unix, smaller organizations frequently don't have any Unix expertise. So it is not
uncommon to see Windows computers managing smaller networks.

Perl's free and open distribution policy means that there is usually a good port available, even if you use a different
system. And, most important for organizations on tight budgets, it's free.

The scripts in this book were written and tested with a variety of different releases of Perl Version 5. However, we
deliberately wrote the scripts to be as portable as possible, so they should run without alteration in most versions of
the language.

The official Perl web page is http://www.perl.com/. This site has a wealth of information to help people who program
in Perl, including many helpful ideas for beginners.

You can download the most recent source code for Perl from this web site, which also has compiled versions for a
variety of platforms. The following URL will direct you to the download area:
http://www.perl.com/pub/a/language/info/software.html.

The Perl web site also has extensive documentation that is quite well-written and easy to follow at
http://www.perl.com/pub/q/documentation.

There are also several excellent books on Perl that you may find helpful. Programming Perl, by Larry Wall, Tom
Christiansen and Jon Orwant (O'Reilly) is an excellent introduction to the language and its features. We also

This document is created with the unregistered version of CHM2PDF Pilot

http://www.perl.com/
http://www.perl.com/pub/a/language/info/software.html
http://www.perl.com/pub/q/documentation

recommend Perl In a Nutshell, by Ellen Siever, Stephen Spainhour and Nathan Patwardhan (O'Reilly). And, if you
are interested in seeing some of the other things that you can do with this language, have a look at Perl Cookbook,
by Tom Christiansen and Nathan Torkington (O'Reilly).

Top

This document is created with the unregistered version of CHM2PDF Pilot

A.2 Expect

Expect is another scripting language that helps solve a different type of problem. Where Perl's strength is in pattern
matching, Expect provides a way to automate interactive applications. We usually use Expect to imitate user sessions
on a router to automate command-line tasks.

The Expect program is able to send one or more lines of output (such as router commands) and capture the results. It
can also react to whatever the router sends it in return. This could be as simple as sending a user ID and waiting for
the password prompt, or you could use this feature to check for various error conditions and react appropriately.

We often write scripts in Expect to automate boring, repetitive tasks. Computers are good at these tasks; people
aren't. People make typos and get bored, or blink and miss key pieces of information. Also, because Expect can
react immediately to the router's responses, the script can generally execute a series of commands very quickly. We
think it's better to spend our time doing something productive while the computer is logging into all of our routers to
do show commands. Expect lets us do this.

Expect is free to download, distribute, and use for any purpose. There are both Unix and Windows versions, and
there are even companies doing commercial support for Expect. We wrote and tested all of the scripts in this book
using Expect Version 5.31.2 on a Unix platform.

You can download Expect from the official web page at http://expect.nist.gov/. This site also has useful
documentation and example scripts. For more information, we highly recommend Exploring Expect, by Don Libes
(O'Reilly).

Top

This document is created with the unregistered version of CHM2PDF Pilot

http://expect.nist.gov/

A.3 NET-SNMP

NET-SNMP is a free open source SNMP package that is based on the earlier UCD-SNMP and CMU-SNMP
packages developed at University of California at Davis, and Carnegie Mellon University, respectively. The current
version supports SNMP Versions 1, 2c, and 3. It is available for both Windows and Unix platforms.

This package includes a complete suite of SNMP programs. It includes SNMP agent and server software, as well as
the command-line utilities needed for interacting with SNMP devices to extract information or change settings that we
used in our scripts. In fact, we used only a small subset of the NET-SNMP suite of applications in this book.

We wrote and tested all of the scripts in this book using NET-SNMP Version 4.2.

The official NET-SNMP web page is http://www.net-snmp.org/, which is mirrored at http://net-snmp.sourceforge.net/
. This site contains documentation and other useful information about the package. You can download the software
via FTP from ftp://ftp.net-snmp.org/pub/sourceforge/net-snmp/.

Unfortunately, we are not aware of any books written specifically about NET-SNMP. However, Essential SNMP,
by Douglas Mauro and Kevin Schmidt (O'Reilly), does a good job of covering SNMP in general, and includes some
discussion of NET-SNMP as well.

Top

This document is created with the unregistered version of CHM2PDF Pilot

http://www.net-snmp.org/
http://net-snmp.sourceforge.net/
ftp://ftp.net-snmp.org/pub/sourceforge/net-snmp/

A.4 PuTTY

PuTTY is a free implementation of the Telnet and SSH protocols for Windows. Its current version supports Telnet,
SSHv1, SSHv2, Secure copy, Secure FTP, and rlogin. A client-only version of each protocol is available for the
Windows platform.

PuTTY boasts an impressive set of features. Its SSH client is robust and feature-rich, and the Telnet support is far
superior to the standard Telnet client that ships with Windows.

The official PuTTY web site is http://www.chiark.greenend.org.uk/~sgtatham/putty/. This site contains documentation
and other useful information about the package. You can download the software via FTP from
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

Top

This document is created with the unregistered version of CHM2PDF Pilot

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

A.5 OpenSSH

OpenSSH is a free version of the SSH protocol suite for Unix and Unix-like systems. Its current version supports
SSHv1, SSHv2, Secure copy, and Secure FTP. Not only does OpenSSH provide SSH clients, it also includes the
server-side software. OpenSSH does not currently support Windows-based systems.

OpenSSH initially started out as an SSH suite for the OpenBSD project. People quickly noticed that this powerful
suite was secure, and most importantly, free. This led to the eventual porting across the various Unix flavors. In fact,
many Unix projects today ship OpenSSH as part of their base system. We used the OpenSSH suite extensively
throughout the writing of this book.

The official OpenSSH web site is http://www.openssh.com/. This site contains documentation and other useful
information about the suite. You can download the suite of tools via FTP from http://www.openssh.com/portable.htm.

Top

This document is created with the unregistered version of CHM2PDF Pilot

http://www.openssh.com/
http://www.openssh.com/portable.htm

A.6 Ethereal

Ethereal is a free network protocol analyzer for both Unix and Windows. It is a powerful analyzer that contains many
useful features, including the ability to read network traces from virtually any other analyzer. It also boasts a rather
impressive list of supported protocols that rivals most of the other available analyzers. Best of all, you can read its
traces on most popular operating systems.

Ethereal includes a graphical interface and a text-based mode called Tethereal. Throughout this book, we used the
CLI version to illustrate the behavior of various protocols. We highly recommend using this protocol analyzer.

The official Ethereal web site is http://www.ethereal.com/. This site contains documentation and other useful
information about Ethereal. You can download the program via FTP from http://www.ethereal.com/download.html.

Top

This document is created with the unregistered version of CHM2PDF Pilot

http://www.ethereal.com/
http://www.ethereal.com/download.html

Appendix B. IP Precedence, TOS, and DSCP
Classifications

In Chapter 11, we discussed several important concepts related to traffic classification, queueing algorithms, and
congestion handling systems. Unfortunately, some of these concepts are unfamiliar to many network engineers, so this
appendix includes some more detail and background.

Every IP packet (including both IPv4 and IPv6) includes a TOS byte. This byte is broken up into fields that the
network uses to help provide the appropriate QoS commitments. In the older TOS model defined in RFC 1349, the
first three bits contain the IP Precedence value, and the next four bits contain the TOS value.

It is easy to get confused between the different uses of the term "TOS." Sometimes it refers to the entire byte and
sometimes to just the four bits that describe forwarding behavior. To help reduce the confusion, we call the four-bit
field the TOS field, and the entire byte the TOS byte.

Table B-1 shows the standard IP Precedence values. It is important to note that normal application traffic is not
permitted to use IP Precedence values 6 or 7, which are strictly reserved for keepalive packets, routing protocols,
and other important network traffic. The network must always give these packets higher priority than any application
packets because no application will work if the network loses its topology information.

Table B-1. Standard IP Precedence values

IP Precedence

Decimal value

Bit pattern

Routine

0

000

Priority

1

001

Immediate

2

010

Flash

3

011

Flash Override

4

100

This document is created with the unregistered version of CHM2PDF Pilot

Critical

5

101

Internetwork control

6

110

Network control

7

111

Table B-2 shows the standard IP TOS values, as defined in RFC 1349. The idea was that an application could use
these bits to request the appropriate forwarding behavior. Because the values are specified in different bits, the
standard originally allowed applications to specify more than one option. This turned out to be unmanageable in
practice, because it wasn't clear which bit should have precedence in cases where two bits were set, and each would
select a different path. So the standard was changed in RFC 1349 to prevent combinations of TOS bits.

Table B-2. Standard IP TOS values

IP TOS

Decimal value

Bit pattern

Normal

0

0000

Minimum monetary cost

1

0001

Maximum reliability

2

0010

Maximum throughput

4

0100

Minimum delay

8

1000

Note that there is some disagreement in the literature about the last bit, which sometimes signifies "minimum monetary
cost" and sometimes is not used at all. Some references state that the TOS byte has one unused bit, and others say
that there are two unused bits. In any case, this entire scheme is now considered obsolete, and has been replaced by
the DSCP model. However, many common applications (including Telnet and FTP) still set TOS field values by
default. So it is important that the network be able to handle these settings gracefully.

In the new DSCP formalism, defined in RFC 2474, the TOS byte is divided into a 6-bit DSCP field followed by 2
unused bits. As we discuss in the next section, the DSCP formalism was designed to give good backward
compatibility with the older formalism. In particular, the first three bits of the DSCP field map perfectly onto the older
IP Precedence definitions.

This document is created with the unregistered version of CHM2PDF Pilot

The first three bits of the DSCP field identify the forwarding class. If the value in the first 3 bits is 4 or less, the packet
uses Assured Forwarding (AF). If the value is 5, which corresponds to the highest allowed application IP
Precedence value, then the packet uses Expedited Forwarding (EF). These names are slightly confusing because, in
general, Assured Forwarding is merely expedient, while Expedited Forwarding is more likely to assure delivery.

Table B-3 shows the Assured Forwarding DSCP values. As we have already mentioned, the first 3 bits specify the
forwarding class. A higher value in this sub-field results in a higher forwarding precedence through the network. The
remaining 3 bits specify Drop Precedence. The higher the Drop Precedence, the more likely the packet will be
dropped if it encounters congestion.

Table B-3. Assured Forwarding DSCP values

 Class 1

Class 2

Class 3

Class 4

Drop
Preceden
ce

Value

Name

Value

Name

Value

Name

Value

Name

Lowest
Drop
Precedenc
e

001010

(10)

AF11

010010

(18)

AF21

011010

(26)

AF31

100010

(34)

AF41

Medium
Drop
Precedenc
e

001100

(12)

AF12

010100

(20)

AF22

011100

(28)

AF32

100100

(36)

AF42

Highest
Drop
Precedenc
e

001110

(14)

AF13

010110

(22)

AF23

011110

(30)

AF33

100110

(38)

AF43

For Expedited Forwarding there is only one value. It has a binary value of 101110, or 46 in decimal, and it is usually
simply called EF. Note that this continues to follow the same pattern. The first 3 bits correspond to a decimal value of
5, which was the highest application IP Precedence value. You could think of the remaining three bits as specifying
the highest Drop Precedence, but really this isn't meaningful because there is only one EF value. However, there is
still significant room for defining additional EF types if it becomes necessary in the future.

The remaining two unused bits in the TOS byte have been the subject of some very interesting discussions lately.
RFC 3168 suggests that they might be used for congestion notifications, similar to the Frame Relay FECN (Forward
Explicit Congestion Notification) and BECN (Backward Explicit Congestion Notification) flags. This would seem to
be a natural place to make this designation, since there is no congestion notification field anywhere else in the IPv4 or
IPv6 headers. If packets carried this sort of information, routers could use adaptive processes to optimize forwarding
behavior. If a link started to become congested, all upstream routers would automatically sense the problem and start

This document is created with the unregistered version of CHM2PDF Pilot

to back off the rate that they were sending traffic before any application suffered from queue drops. This would be
similar to the adaptive Frame Relay traffic shaping system that we discussed in Recipe 11.11. We look forward to
seeing Cisco implement this feature in the future.

Top

This document is created with the unregistered version of CHM2PDF Pilot

B.1 Combining TOS and IP Precedence to Mimic DSCP

You can also get the equivalent of DSCP, even on older routers that support only TOS and Precedence, by
combining the TOS and Precedence values. All Assured Forwarding DSCP Class 1 values are equivalent to an IP
Precedence value of 1, Priority. All Class 2 values correspond to IP Precedence 2, Immediate; Class 3 values to
IP Precedence 3, Flash; and Class 4 corresponds to an IP Precedence value of 4, Flash Override. The higher IP
Precedence values are not used for Assured Forwarding.

You can then select the appropriate Drop Precedence group from the TOS values. However, you have to be careful,
since there are 4 TOS bits. Combining this with the 3 bits from IP Precedence gives you 7 bits to work with, while
DSCP only uses the first 6. For example, looking at the bit values that give AF11 in Table B-3, you can see that the
last three bits are 010. So the corresponding TOS value would be 0100, which is 4 in decimal, or maximum
throughput.

In Table B-3, you can see that a TOS value of 4, maximum throughput, always gives the lowest AF Drop
Precedence. Selecting a TOS value of 8, minimum delay, gives medium Drop Precedence in all classes. And you can
get the highest Assured Forwarding Drop Precedence value by setting a TOS value of 12, which doesn't have a
standard name in the TOS terminology.

There is reasonably good interoperability between the AF DSCP variables and the combination of IP Precedence
and TOS, which is good because it's impossible for a router to tell the difference in general. Only the three top
priorities of IP Precedence are not represented, and that is simply because these DSCP values are used for
guaranteed delivery services.

The biggest difference between the TOS and Assured Forwarding models is that, where the Assured Forwarding
model is used to define a type of queueing, the TOS model is used to select a particular path. TOS was intended to
work with a routing protocol, such as OSPF, to select the most appropriate path for a particular packet based on its
TOS value. That is, when there are multiple paths available, a TOS-based OSPF (such as the version suggested in
RFC 2676) would attempt to make a reasonable TOS assignment to each of them. If the router needed to forward a
packet that was marked with a particular TOS value, it would attempt to find a route with the same TOS value. Note
that Cisco never incorporated this type of functionality into its OSPF implementation, however. So, if TOS is going to
have an effect on how packets are forwarded, you have to configure it manually by means of policy-based routing.

This was the historical intent for TOS, but in practice, most engineers found that it was easier to just use the TOS
field to influence queueing behavior rather than path selection. So the IETF developed the more modern and useful
DSCP formalism.

Assured Forwarding introduces the concept of Per-Hop Behavior (PHB). Each DSCP value has a corresponding
well-defined PHB that the router uses not to select a path, but to define how it will forward the packet. The router
will forward a packet marked AF13 along the same network path as a packet marked AF41 if they both have the
same destination address. However, it will be more likely to drop the AF13 packet if there is congestion, and it will
forward the AF41 packet first if there are several packets in the queue.

This document is created with the unregistered version of CHM2PDF Pilot

From this it should be clear why it is easier to implement AF than TOS-based routing on a network.

Top

This document is created with the unregistered version of CHM2PDF Pilot

B.2 RSVP

Reservation Protocol (RSVP) is a signaling protocol that allows applications to request and reserve network
resources, usually bandwidth. The core protocol is defined in RFC 2205. It is important to remember that RSVP is
used only for requesting and managing network resources. RSVP does not carry user application data. Once the
network has allocated the required resources, the application marks the packets for special treatment by setting the
DSCP field to the EF value, 101110.

The process starts when an end device sends an RSVP PATH request into the network. The destination address of
this request is the far end device that it wants to communicate with. The request packet includes information about the
application's source and destination addresses, protocol and port numbers, as well as its QoS requirements. It could
specify a minimum required bandwidth, and perhaps also delay parameters. Each router along the path picks up this
packet and figures out the best path to the destination.

Each router receiving an RSVP PATH request replaces the source address in the packet with its own, and forwards
the packet to the next router along the path. So the QoS parameters are requested separately on each
router-to-router hop. If a router is able to accommodate the request, it sends back an RSVP RESV message to the
requester. For all but the first router on the path, the requester is the previous router. If a router receives one of these
RESV packets, it knows that everything upstream from it is able to comply with the request. If it also has the
resources to accommodate the requested QoS parameters, it sets aside the resources and sends an RESV packet to
its downstream neighbor. It also sends an RSVP CONFIRM message upstream to acknowledge that the request will
be honored. The routers periodically pass PATH, RESV, and CONFIRM packets to one another to ensure that the
resources remain available.

If a router is not able to set aside the requested resources for whatever reason, it rejects the reservation. This may
result in the entire path being rejected, but it can also just mean that the network will reserve the resources
everywhere except on this one router-to-router link.

It would clearly be counterproductive if every device on the network could request as much bandwidth as they
wanted, whenever they wanted. This would leave few network resources for routine applications. So usually when
you configure a router for RSVP, you just set aside a relatively small fraction of the total bandwidth on a link for
reservation. Further, you will often want to restrict which source addresses are permitted to make RSVP requests.

Because RSVP makes its reservation requests separately on each link, it can easily accommodate multicast flows. In
this case, you have to be careful that the periodic updates happen quickly so that any new multicast group members
won't have to wait long before they start to receive data. Please refer to Chapter 23 for a more detailed discussion of
multicast services.

RSVP is an extremely useful technique for reserving network resources for real-time applications such as Voice over
IP (VoIP). However, because it forces the routers to keep detailed information on individual data flows, it doesn't
scale well in large networks. RSVP is most useful at the edges of a large network, where you can reserve bandwidth
entering the core. However, you probably don't want it running through the core of your network.

This document is created with the unregistered version of CHM2PDF Pilot

In large networks, it is common to use RSVP only at the edges of the network, with more conventional DSCP-based
methods controlling QoS requirements in the core.

Top

This document is created with the unregistered version of CHM2PDF Pilot

B.3 Queueing Algorithms

You can implement several different queueing algorithms on Cisco routers. The most common type is Weighted Fair
Queueing (WFQ), which is enabled by default on low-speed interfaces. There is also a class-based version of WFQ
called Class-Based Weighted Fair Queueing (CBWFQ). These algorithms have the advantage of being fast, reliable,
and easy to implement. However, in some cases, you might want to consider some of the other queueing systems
available on Cisco routers.

Priority Queueing lets you specify absolute prioritization in your network so that more important packets always
precede less important ones. This can be useful, but it is often dangerous in practice.

The other important queueing algorithm on Cisco routers is Custom Queueing, which allows you direct control over
many of the queueing parameters.

B.3.1 Weighted Fair Queueing

A flow is loosely defined as the stream of packets associated with a single session of a single application. The
common IP implementations of Fair Queueing (FQ) and WFQ assume that two packets are part of the same flow if
they have the same source and destination IP addresses, the same source and destination TCP or UDP port
numbers, and the same IP protocol field value. The algorithms combine these five values into a hash number, and sort
the queued packets by this hash number.

The router then assigns sequence numbers to the queued packets. In the FQ algorithm, this process of sequencing the
packets is optimized so that each flow gets a roughly equal share of the available bandwidth. As it receives each
packet, the router assigns a sequence number based on the length of this packet and the total number of bytes
associated with this same flow that are already in the queue.

This has a similar effect to a flow-based Round Robin (RR) queueing algorithm, in which all of the flows are assigned
to different queues. These queues are then processed a certain number of bytes at a time until enough bytes have
accumulated for a given queue to send a whole packet. Although this is a useful way of picturing the algorithm
mentally, it is important to remember that the Cisco implementations of FQ and WFQ do not actually work this way.
They keep all of the packets in a single queue. So, if there is a serious congestion problem, you will still get global tail
drops.

This distinction is largely irrelevant for FQ, but for WFQ it's quite important. WFQ introduces another factor besides
flow and packet size into the sequence numbers. The new factor is the weight (W), which is calculated from the IP
Precedence (P) value. For IOS levels after 12.0(5)T, the formula is:
 W = 32768/(P+1)

For all earlier IOS levels, the weight is lower by a factor of 4096:
 W = 4096/(P+1)

Cisco increased the value to allow for finer control over weighting granularity.

This document is created with the unregistered version of CHM2PDF Pilot

The weight number for each packet is multiplied by the length of the packet when calculating sequence numbers. The
result is that the router gives flows with higher IP Precedence values a larger share of the bandwidth than those with
lower precedence. In fact, it is easy to calculate the relative scaling of the bandwidth shares of flows with different
precedence values.

Table B-1Table B-1 shows, for example, that a flow with Flash Override Precedence will get five times the
bandwidth of a packet with Routine Precedence. However, if all of the flows have the same precedence, WFQ
behaves exactly the same as FQ.

Table B-4. Relative share of bandwidth in WFQ by IP Precedence

Precedence name

Value

Relative share of bandwidth

Routine

0

1

Priority

1

2

Immediate

2

3

Flash

3

4

Flash Override

4

5

Critical

5

6

Internetwork control

6

7

Network control

7

8

These algorithms tend to do three things. First, they prevent individual flows from interfering with one another.
Second, they tend to reduce queueing latency for applications with smaller packets. Third, they ensure that all of the
packets from a given flow are delivered in the same order that they were sent.

In practice, of course, a router has limited memory resources, so there is a limit to how many flows it can handle. If
the number of flows is too large or the volume of traffic is too high, the router will start to have trouble with the
computation. So these algorithms tend to be best on low-speed interfaces. WFQ is enabled by default on all
interfaces with bandwidth of E1 (roughly 2Mbps) or less. The only exceptions are interfaces that use SDLC or

This document is created with the unregistered version of CHM2PDF Pilot

LAPB link layer protocols, which require FIFO queuing.

Cisco provides several mechanisms to improve the bandwidth scaling of queueing algorithms. The first is Distributed
Weighted Fair Queueing (DWFQ), which is only available in routers that have Versatile Interface Processor (VIP)
cards such as 7500 series routers, or the older 7000 series with RSP7000 processors. DWFQ is essentially the
same as WFQ, except that the router is able to distribute the queueing calculations to the various VIP modules. But
there is also another important difference: DWFQ uses a different sorting algorithm called Calendar Queueing, which
uses much more memory, but operates much faster. This tradeoff means that you can use DWFQ on a VIP2-50
card containing Port Adapters Modules (PAM) with an aggregate line speed of up to OC-3. In fact, if the aggregate
line speed is greater than a DS-3 (45Mbps), we don't recommend using DWFQ on anything slower than a VIP2-50.
Cisco claims that DWFQ can operate at up to OC-3 speeds. However, if you need to support several interfaces that
aggregate to OC-3 speeds on one VIP module, you may want to consider a different queueing strategy, particularly
CBWFQ.

The next popular queueing strategy on Cisco routers, particularly for higher speed interfaces, is CBWFQ. CBWFQ
is similar to WFQ, except that it doesn't group traffic by flows. Instead, it groups by traffic classes. A class is simply
some logical grouping of traffic. It could be based on IP Precedence values, source addresses, input interface, or a
variety of other locally useful rules that you can specify on the router.

The principal advantage to CBWFQ is that it allows you to expand the functionality of WFQ to higher speeds by
eliminating the need to keep track of a large number of flows. But there is another important advantage to CBWFQ.
The most common and sensible way to use CBWFQ is to assign the classes according to precedence or DSCP
values. You can then manually adjust the weighting factors for the different classes. As you can see in Table B-1, the
standard WFQ weighting factors give traffic with an IP Precedence value of 1 twice as much bandwidth as
Precedence 0 traffic. However, Precedence 7 traffic gets just under 17% more bandwidth than Precedence 6 traffic.
For many applications, these arbitrary weighting factors are not appropriate. So the ability to adjust these weighting
factors can come in handy if you need to give your highest-priority traffic a larger share of the bandwidth.

B.3.2 Priority Queueing

Priority Queueing (PQ) is an older queueing algorithm that handles traffic with different precedence levels much more
pragmatically. The Cisco implementation of Priority Queueing uses four distinct queues called high priority, medium
priority, normal priority, and low priority. The PQ algorithm maintains an extremely strict concept of priority. If
there are any packets in a higher priority queue, they must be sent first before any packets in the lower priority
queues are sent.

Some types of critical real-time applications that absolutely cannot wait for low priority traffic work well with PQ.
However, there is an obvious problem with this strategy: if the volume of traffic in the higher priority queues is greater
than the link capacity, then no traffic from the lower priority queues will be forwarded. PQ starves low priority
applications in these cases.

So a pure PQ implementation requires that you have an extremely good understanding of your traffic patterns. The
high priority traffic must represent a small fraction of the total, with the lowest priorities having the largest net volume.
Further, you must have enough link capacity that the PQ algorithm is only used during peak bursts. If there is routine
link congestion, PQ will give extremely poor overall performance.

However, Cisco has recently implemented a new hybrid queue type, called Low Latency Queueing (LLQ), which

This document is created with the unregistered version of CHM2PDF Pilot

you can use with CBWFQ to give the best features of PQ while avoiding the queue starvation problem. The idea is
simply to use CBWFQ for all of the traffic except for a small number subqueues that are reserved strictly for
relatively low-volume real-time applications. The router services the real-time queues using a strict priority scheme
and the others using CBWFQ. So, if there is a packet in one of the real-time queues, the router will transmit it before
looking in one of the other queues. However, when there is nothing in the priority queues, the router will use normal
CBWFQ for everything else.

LLQ also includes the stipulation that if the volume of high priority traffic exceeds a specified rate, the router will stop
giving it absolute priority. The guarantees that LLQ will never starve the low priority queues.

This model is best suited to applications like voice or video where the real-time data comes in a fairly continuous but
low bandwidth stream of small packets, as opposed to more bursty applications such as file transfers.

B.3.3 Custom Queueing

Custom Queueing (CQ) is one of Cisco's most popular queueing strategies. CQ was originally implemented to
address the clear shortcomings of PQ. It lets you configure how many queues are to be used, what applications will
use which queues, and how the queues will be serviced. Where PQ has only 4 queues, CQ allows you to use up to
16. And, perhaps most importantly, it includes a separate system queue so that user application data cannot starve
critical network control traffic.

CQ is implemented as a round-robin queueing algorithm. The router takes a certain predetermined amount of data
from each queue on each pass, which you can configure as a number of bytes. This allows you to specify
approximately how much of the bandwidth each queue will receive. For example, if you have four queues, all set to
the same number of bytes per pass, you can expect to send roughly equal amounts of data for all of these
applications. Since the queues are used only when the network link is congested, this means that each of the four
applications will receive roughly one quarter of the available bandwidth.

However, it is important to remember that the router will always take data one packet at a time. If you have a series
of 1500-byte packets sitting in a particular queue and have configured the router to take 100 bytes from this queue
on each pass, it will actually transmit 1 entire packet each time, and not 1 every 15 times. This is important because it
can mean that your calculations of the relative amounts of bandwidth allocated to each queue might be different from
what the router actually sends.

This difference tends to disappear as you increase the number of bytes taken each time the queues are serviced. But
you don't want to let the number get too large or you will cause unnecessary latency problems for your applications.
For example, if the byte count for each of your four queues is 10,000 bytes, and all of the queues are full, the router
will send 10,000 bytes from the first queue, then 10,000 bytes from the second queue, and so on. From the time it
finishes servicing the first queue until the time that it returns to service it again, it will have sent 30,000 bytes. It takes
roughly 160ms to send this much data through a T1 link, but the gap between the previous two packets in this queue
was effectively zero. Variations in latency like this are called jitter, and they can cause serious problems for many
real-time applications.

So, as with all of the other queueing algorithms we have discussed, CQ has some important advantages and
disadvantages. Chapter 11 contains recipes that implement all of the queueing varieties we have discussed. You need
to select the one that matches your network requirements best. None of them is perfect for all situations.

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

B.4 Dropping Packets and Congestion Avoidance

Imagine a queue that holds packets as they enter a network bottleneck. These packets carry data for many different
applications to many different destinations. If the amount of traffic arriving is less than the available bandwidth in the
bottleneck, then the queue just holds the packets long enough to transmit them downstream. Queues become much
more important if there is not enough bandwidth in the bottleneck to carry all of the incoming traffic.

If the excess is a short burst, the queue will attempt to smooth the flow rate, delivering the first packets as they are
received and delaying the later ones briefly before transmitting them. However, if the burst is longer, or more like a
continuous stream, the queue will have to stop accepting new packets while it deals with the backlog. The queue
simply discards the overflowing inbound packets. This is called a tail drop.

Some applications and protocols deal with dropped packets more gracefully than others. For example, if an
application doesn't have the ability to resend the lost information, then a dropped packet could be devastating. On
the other hand, some real-time applications don't want their packets delayed. For these applications, it is better to
drop the data than to delay it.

From the network's point of view, some protocols are better behaved than others. Applications that use TCP are
able to adapt to dropping an occasional packet by backing off and sending data at a slower rate. However, many
UDP-based protocols will simply send as many packets as they can stuff into the network. These applications will
keep sending packets even if the network can't deliver them.

Even if all applications were TCP-based, however, there would still be some applications that take more than their
fair share of network resources. If the only way to tell them to back off and send data more slowly is to wait until the
queue fills up and starts to tail drop new packets, then it is quite likely that the wrong traffic flows will be instructed to
slow down. However, an even worse problem called global synchronization can occur in an all-TCP network with
a lot of tail drops.

Global synchronization happens when several different TCP flows all suffer packet drops simultaneously. Because the
applications all use the same TCP mechanisms to control their flow rate, they will all back off in unison. TCP then
starts to automatically increase the data rate until it suffers from more packet drops. Since all of the applications use
the same algorithm for this process, they will all increase in unison until the tail drops start again. This whole wavelike
oscillation of traffic rates will repeat as long as there is congestion.

Random Early Detection (RED) and its cousin, Weighted Random Early Detection (WRED), are two mechanisms to
help avoid this type of problem, while at the same time keeping one flow from dominating. These algorithms assume
that all of the traffic is TCP-based. This is important because UDP applications get absolutely no benefit from RED
or WRED.

RED and WRED try to prevent tail drops by preemptively dropping packets before the queue is full. If the link is not
congested, then the queue is always more or less empty, so these algorithms don't do anything. However, when the
queue depth reaches a minimum threshold, RED and WRED start to drop packets at random. The idea is to take
advantage of the fact that TCP applications will back off their sending rate if they drop a packet. By randomly

This document is created with the unregistered version of CHM2PDF Pilot

thinning out the queue before it becomes completely full, RED and WRED keep the TCP applications from
overwhelming the queue and causing tail drops.

The packets to be dropped are selected at random. This has a couple of important advantages. First, the busiest flow
is likely to be the one with the most packets in the queue, and therefore the most likely to suffer packet drops and be
forced to back off. Second, by dropping packets at random, the algorithm effectively eliminates the global
synchronization problems discussed earlier.

The probability of dropping a packet rises linearly with the queue depth, starting from a specified minimum threshold
up to a maximum value. A simple example can help to explain how this works. Suppose the minimum threshold is set
to 5 packets in the queue, and the maximum is set to 15 packets. If there are fewer than 5 packets in the queue, RED
will not drop anything. When the queue depth reaches the maximum threshold, RED will drop one packet in 10. If
there are 10 packets in the queue, then it is exactly halfway between the minimum and maximum thresholds and RED
will drop half as many packets as it will at the maximum threshold: 1 packet in 20. Similarly, 7 packets in the queue
represents 20% of the distance between the minimum and maximum thresholds, so the drop probability will be 20%
of the maximum: 1 packet in 50.

If the queue fills up despite the random drops, then the router has no choice but to resort to tail drops, the same as if
there were no sophisticated congestion avoidance. So RED and WRED have a particularly clever way of telling the
difference between a momentary burst and longer-term heavy traffic volume, because they need to be much more
aggressive with persistent congestion problems.

Instead of using a constant queue depth threshold value, these algorithms base the decision to drop packets on an
exponential moving time averaged queue depth. If the queue fills because of a momentary burst of packets, RED will
not start to drop packets immediately. However, if the queue continues to be busy for a longer period of time, the
algorithm will be increasingly aggressive about dropping packets. This way the algorithm doesn't disrupt short bursts,
but it will have a strong effect on applications that routinely overuse the network resources.

The WRED algorithm is similar to RED, except that it selectively prefers to drop packets that have lower IP
Precedence values. Cisco routers achieve this by simply having a lower minimum threshold for lower precedence
traffic. So, as the congestion increases, the router will tend to drop packets with lower precedence values. This tends
to protect important traffic at the expense of less important applications. However, it is also important to bear in mind
that this works best when the amount of high precedence traffic is relatively small.

If there is a lot of high priority traffic in the queue, it will not tend to benefit much from the efficiency improvements
typically offered by WRED. In this case, you will likely see only a slight improvement over the characteristics of
ordinary tail drops. This is yet another reason for being careful in your traffic categorization and not being too
generous with the high precedence values.

Flow-based WRED is an interesting variant on WRED. In this case, the router makes an effort to separate out the
individual flows in the router and penalize only those that are using more than their share of the bandwidth. The router
does this by maintaining a separate drop probability for each flow based on their individual moving averages. The
heaviest flows with the lowest precedence values tend to have the most dropped packets. However, it is important to
note that the queue is congested by all the traffic, not just the heaviest flows. So the lighter flows will also have a finite
drop probability in this situation. But, the fact that the heavy flow will have more packets in the queue, combined with
the higher drop probability for these heavier flows, means that you should expect them to contribute most of the
dropped packets.

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animal on the cover of Cisco Cookbook is a black jaguar (Panthera onca), sometimes called a black panther.
While the color of black (melanastic) jaguars differs from that of the more common golden-yellow variety, they are of
the same species. Jaguars of all types are native to the tropics, swamps, and grasslands of Central and South
America (and rumored to still exist in parts of the southwestern U.S.), but the black jaguar is usually found only in
dense forests. They are between 4 and 6 feet long and have a long tail that is usually about 30 inches long. Males can
weigh up to 250 pounds, while females are considerably smaller and rarely grow to more than 150 pounds. Even
though black jaguars often appear to be a solid black in artistic renditions and photography, their coats still have the
dark rings containing even darker spots that are a distinguishing feature of all jaguars. Also notable are their eyes,
which are a shiny reflective yellow.

Jaguars will eat almost any animal, including sloths, pigs, deer, monkeys, and cattle. Their hooked claws allow them
to catch fish, frogs, turtles, and even small alligators. Even though they sit at the top of the rain forest food chain,
humans are a large threat to jaguars of all colors-it's estimated that only 15,000 jaguars are left in the wild and the
species is listed as near threatened. They are hunted for their coats (the black coat is greatly prized) and deforestation
threatens their survival.

The black jaguar plays a large role in many South American religions, and is often considered a wise and divine
animal who is associated with the worlds of magic and spirit. The Aztecs believed that the jaguar was the earthbound
representative of their deity, and both the Mayans and Toltecs believed that their Sun God became a black jaguar at
night in order to pass unseen through the underworld.

Philip Dangler was the production editor and copyeditor for Cisco Cookbook. Sarah Sherman, Derek Di Matteo,
Jane Ellin, and Claire Cloutier provided quality control. Julie Hawks wrote the index. Jamie Peppard and Mary
Agner provided production assistance.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is a
19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress
4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Andrew Savikas to FrameMaker 5.5.6 with
a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons
were drawn by Christopher Bing. This colophon was written by Philip Dangler.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and
Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray,
Benn Salter, John Chodacki, and Jeff Liggett.

Top

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Top

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

(CBWFQ) Class-Based Weighted Fair Queueing
802.1q VLAN trunks

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

AAA
 Accounting feature
 authentication, using TACACS+ for
 framework
 methods
aaa authorization command
 if-authenticated keyword
aaa command
aaa new-model command
absolute-timeout command
access and privilege
 changing level of specific IOS commands
 restricting command access
 restricting telnet access
 secure remote access [See SSH]
 setting levels for different users
 setting per-port
Access Control Lists (ACLs) [See access lists]
access lists
 adding comments to ACL
 analyzing log entries
 context based
 identifying passive mode FTP sessions
 logging when used
 named and reflexive
 rate-limiting
 showing status of
 SNMP
access-class keyword
access-class statements
access-group command
access-list rate-limit command
accounting
ACLs (Access Control Lists) [See access lists]
Address Resolution Protocol [See ARP]
administrative distances
 changing
 distance command and
agents (SNMP)
aggregate-address command
AGGREGATOR attribute (BGP)
alias command
aliases
 creating
 scripting and
all routes explorers
analog modems
anonymous FTP
Appletalk
area command
area x range command
ARP (Address Resolution Protocol)
 table information, extracting
 table timeout value, adjusting
arp timeout command 2nd
arpt.pl script
AS paths
 filtering BGP routes based on
 prepending ASNs
 removing ASNs
AS_PATH attribute (BGP)
ASBRs (Autonomous System Boundary Routers)
ASNs (Autonomous System Number)
 prepending to AS Path
 removing from AS path
Assured Forwarding
 DSCP values
 models, difference between TOS and
async default routing command
async dial, no exec command
ATM
 circuit, payload scrambling on
 link with PVCs, configuring
atm ds3-scramble command
ATM Operations Administration and Management (OAM)
atm pvc command
atm-dxi keyword
ATOMIC_AGGREGATE attribute (BGP)
authentication 2nd [See also TACACS+, authentication]
 EIGRP
 NTP
 OSPF
 RIP
 RSA keys
authentication keyword
authorization
auto-cost reference-bandwidth command
autocommand keyword (username command) 2nd
autoinstall option
automating router login sequence
Autonomous System Boundary Routers (ASBRs)
Autonomous System Numbers [See ASNs]
Autonomous Systems (AS)
AUX ports
 connecting asynchronous modem to
 copying IOS image
 disabling

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

backup command
backup delay command
Backward Explicit Congestion Notification (BECN)
bandwidth command 2nd
bandwidth percent command
banner messages
 disabling on particular port
banner tokens
BGP (Border Gateway Protocol)
 adjusting local preferences
 attributes
 Autonomous System (AS)
 basic terminology
 configuring
 connecting two ISPs
 using redundant routers
 creating good redundant ISP connections
 eBGP Multihop
 filtering routes based on AS paths
 load balancing
 Next Hop attribute
 overview
 peer groups
 authenticating
 redistributing routes with
 reducing size of routing table
 restricting networks
 route selection
 summarizing routing table
bgp always-compare-med command
bgp default local-preference command
binding keyword (show ip dhcp)
Bisync (BSC), connecting two devices
Blowfish
boot command
boot system command
 bootflash\: option
 target options
booting router
 over the network, security problems
 using alternate configuration
bootstrap program
Border Gateway Protocol [See BGP]
bridge-group command
bridging between Ethernet and Token Ring
broadcast keyword
broadcasts, convering to multicasts
bsc char-set command
bsr-candidate command
BSTUN (Block Serial Tunnel)
bstun protocol-group command
bstun route command
buffers
 different types
 knowing when to adjust

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

calendar set command
calendars, router
CAR (Committed Access Rate)
 commands
 traffic shaping, difference between
CAST-256
CBAC
 application support keywords
 recommended settings
CBWFQ (Class-Based Weighted Fair Queueing)
CCITT LMI standard
CDP (Cisco Discovery Protocol)
 disabling
 enabling
 reenabling
 security problems related to
cdp run command
CEF (Cisco Express Forwarding)
Certification Authority (CA)
CGMP (Cisco Group Management Protocol)
 configuring
Character Generation (chargen) function
chargen function
Chargen small server
chmod command 2nd
CIDR (Classless Inter-Domain Routing)
 converting to or from
circuit-count option
Cisco Discovery Protocol [See CDP]
Cisco Express Forwarding [See CEF]
Cisco router [See routers]
CiscoÕs Dialer Watch
CiscoÕs web site
Class-Based Weighted Fair Queueing [See CBWFQ]
Classless Inter-Domain Routing [See CIDR]
clear arp command
clear logging command
Clear To Send (CTS) signal
client-identifier command
clock rate command 2nd 3rd
 DTE devices
clock summer-time command
clock timezone command
clock, setting on router
command alias [See aliases]
Committed Access Rate [See CAR]
Committed Information Rate (CIR)
COMMUNITY attribute (BGP)
Compression Service Adapter (CSA)
conditional default route
config-register command
configuration files
 booting router using remote
 extracting
 generating large numbers of
 larger than available NVRAM
 overly large
 reloading router with empty
 removing passwords
 startup
 synchronizing
 TACACS+ server
configurations
 acting as TFTP server
 backing up
 booting from multiple TFTP servers
 changes to large number of routers
 changing on large number of routers
 downloading via FTP
 extracting hardware
 last changed
 mass changes
 modifying using SNMP
 monitoring via browser interface
 returning to default
 saving to server
 serving multiple files via TFTP
 TFTP
configure network command
configure terminal command 2nd
conflict keyword (show ip dhcp)
congestion
 avoiding
 controlling with WRED
 determining if losing multicast traffic due to
connection feature (AAA)
connections active keywords
console, copying IOS image
controller T1 command
copy ftp\: command
copy tftp\: command 2nd
Core Based Trees (CBT)
crypto isakmp key command
crypto key
 generate rsa command
 zeroize rsa command
crypto key generate command
crypto key zeroize command
crypto map command
CRYPTOMAP
CSU/DSU
 56Kbps, configuring
 for WAN connection, configuring
 modules, four-wire
CSV files
Custom Queueing (CQ) 2nd
 with Priority Queueing

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Data Carrier Detect (DCD)
Data Communications Equipment (DCE)
Data Encryption Standard (DES)
Data Link Connection Identifier (DLCI)
Data Set Ready (DSR) signal
Data Terminal Equipment [See DTE]
Data Terminal Ready (DTR) signal
data-coding scrambled command
database keyword (show ip dhcp)
Daylight Saving Time, adjusting router to
Daytime small server
DCE Data Communications Equipment
debug dlsw command
debug ip igmp command
debug ip mpacket command
debug ip mrouting command
debug ip nat command
debug ntp packet command
debug ppp authentication command
debug standby terse command
debugging severity level messages
default originate option
default service permit command
default-information command 2nd 3rd 4th
default-metric command 2nd
default-router command
delay command
delete command 2nd
dense mode (multicast routing protocol)
deny any command
 log keyword
deny running-config command (TACACS+ configurations)
DES (Data Encryption Standard)
description command
Designated Router (DR) selection process
Desktop IOS Feature Set
DHCP (Dynamic Host Configuration Protocol)
 allocating static IP addresses
 configuring database client
 configuring multiple servers
 debugging
 defining configuration options
 defining lease periods
 dynamically allocating IP addresses
 dynamically configuring router IP addresses
 IP helper addresses
 limiting impact of
 options
 showing status
dial backups
 checking status
 CiscoÕs Dialer Watch
 connecting asynchronous modem to AUX port
 debugging
 determining how many lines are needed
 physical failures
 properly disconnecting
 recovery, automating
dialer interfaces
dialer load-threshold command 2nd
dialer map command 2nd
dialer pool-member command
dialer rotary-group command
Dialer Watch
dialer watch-group command
dialer-group command
dialer-list statement
Diffie-Hellman (DH) key exchange model
dir nvram\: command
disable command
Discard small server
distance command
Distance Vector Multicast Routing Protocol (DVMRP)
distribute-list command 2nd
distribute-list out command
DLSw (Data Link Switching)
 checking status
 configuring
 configuring SDLC
 controlling packet fragmentation
 converting Ethernet and Token Ring MAC addresses
 debugging
 redundancy and fault tolerance
 tagging packets for QoS
 Token Ring to Ethernet bridging
dlsw bridge-group command
dlsw cache-ignore-netbios-datagram command
dlsw icanreach command
dlsw icanreach mac-exclusive command
dlsw load-balance circuit-count command
dlsw remote-peer command 2nd
 priority option
dlsw ring-list command
dlsw tos map command
DNS (Domain Name Service)
 configuring router to use
dns-server command
domain name lookups, disabling
Domain Name Service [See DNS]
domain-lookup command
down-when-looped command
DSCP fields
 filtering by
 forwarding packets
 setting
dscp keyword (access list command)
DTE (Data Terminal Equipment)
 clock rate command and
dump files
DVMRP (Distance Vector Multicast Routing Protocol) 2nd
 tunnels
DWFQ (Distributed Weighted Fair Queueing)
Dynamic Host Configuration Protocol [See DHCP]
dynamic routing protocols, passing through tunnels

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

eBGP
 load balancing
 Multihop
ebgp-multihop keyword
Echo small server
efficiency, improving router
EIGRP (Enhanced Interior Gateway Routing Protocol)
 adjusting metrics
 adjusting timers
 authentication, enabling
 configuring
 creating default route in
 disabling
 filtering routes with
 limiting bandwidth utilization
 neighbor state changes, logging
 protocols that can be redistributed into
 redistributing routes into
 using route maps
 route summarization
 stub routing
 viewing status
eigrp log-neighbor-changes command
eigrp stub command
 keywords
Electronically Erasable Programmable Read Only Memory (EEPROM)
emulation packages
enable command
Enable method (AAA)
enable password command 2nd
enable secret command 2nd
 password restrictions
encapsulation command 2nd 3rd
encapsulation ppp command
encapsulation sdlc command
encryption
 deciphering CiscoÕs
 passwords
 stronger
 remote access [See SSH]
 RSA keys
end command
Enhanced Interior Gateway Routing Protocol [See EIGRP]
Enterprise Feature Set
Erasable Programmable Read Only Memory (EPROM)
erase command 2nd 3rd
erase nvram\: command
erase startup-config command
esp-sha-hmac and esp-3des transforms
Ethereal
Ethernet
 bridging between Token Ring and
 interface features
evaluate command (ACL)
events, logging
exceed-action keyword
exception core-file command
exception dump command
exception dump files
Excess Information Rate (EIR)
excluded-address command
exec feature (AAA)
exec-timeout command
Expect
 language
 script example
explorer packets
Exterior Gateway Protocol (EGP)
external networks, changing administrative distances
extracting version information from list of routers

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Fair Queueing (FQ)
fair-queue command
Fast Switching
FastEthernet interface
fault tolerance, improving on DLSw network
FIFO (First In First Out) queue
files
 created by dump
 deleting from routerÕs flash
filesystems
 commands
 that CiscoÕs most common routers use
filtering
 advanced
 based on QoS information
 based on TCP header flags
 by application
 by source or destination IP address
 multi-port applications
 TCP sessions
finger application
 finger command
firewall, using router as
flash memory
 deleting files from
 partitioning
flash storage media
flash\: option (boot system command)
floating static routes
flow 2nd
Forward Explicit Congestion Notification (FECN)
four-wire CSU/DSU modules
Frame Relay
 clouds
 compressing data
 with maps
 configuring SVCs
 LMI options
 map statements
 PVCs
 assigned to separate sub-interfaces
 sharing same interface
 sharing same subinterface
 Quality of Service (QoS) features
 traffic shaping
 viewing status information
frame-relay idle-timer command
frame-relay intf-type command
frame-relay lmi-type q933a command
frame-relay map command
frame-relay route statements
frame-relay svc command
frame-relay switching option
FRF.9 compression command
FTP
 anonymous
 changing TCP ports
 PORT command
 sessions, passive mode
 using from router

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

gratuitous ARP packet
GRE (Generic Routing Encapsulation)

Top

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

harware configurations
Hashed Message Authentication Codes (HMAC)
High-Level Data Link Control (HDLC) protocol
host command
host lookup table
 creating on router
host.pl script
 sample output
hostnames, resolving
Hot Standby Router Protocol [See HSRP]
HSRP (Hot Standby Router Protocol)
 configuring
 on Token Ring
 debugging
 ICMP redirects
 load balancing
 MAC addresses and
 overview
 preempt
 reacting to problems on other interfaces
 security
 SNMP traps
 timers
 viewing state information
HTTP access to routers
Hyperterminal

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

iBGP (Interior Border Gateway Protocol)
 load balancing 2nd
ICMP Router Discovery Protocol (IRDP)
IDs, setting up
ietf keyword
if-authenticated keyword (aaa authorization command)
ifIndex-table file
IGMP (Internet Group Management Protocol)
 snooping
IGP (Interior Gateway Protocols)
 redistributing routes between BGP and
IMCP redirects and HSRP
in-band signaling
information storage
input-queue command
interface command
interface-specific summarization command (RIP)
interfaces, router
 adapters
 configuring ATM link with PVCs
 configuring sync/async
 Ethernet
 serial
 configuring
 Token Ring
 viewing status
Interior Border Gateway Protocol [See iBGP]
Interior Gateway Protocols [See IGP]
International Data Encryption Algorithm (IDEA)
Internet Key Exchange (IKE)
Internet Security Association Key Management Protocol (ISAKMP)
Internetwork Operating System (IOS)
InterSwitch Link (ISL) VLAN trunk
inventory information, extracting using SNMP
inventory.sh script
IOS
 checksum
 files
 downloading via FTP
 images
 booting alternate
 booting over network
 common reasons for upgrading
 copying through console or AUX ports
 copying to server
 remotely upgrading using SNMP
 too large for router local flash
 upgrading
 world writeable
 levels, extracting list of
 version, changing on router
ip access-group command
ip address dhcp command
IP addresses
 associating with MAC addresses
 classes of
 file containing all
 static
 unregistered
ip bandwidth-percent command
ip dhcp exclude-address command
ip dhcp excluded-address command
ip directed-broadcast command
ip domain-list command
ip domain-lookup command 2nd
ip domain-name command
ip dvmrp accept-filter command
ip dvmrp unicast-routing command 2nd
ip finger command 2nd
ip forward-protocol command
ip helper-address command 2nd 3rd
ip host command
ip irdp command
ip local policy route-map command
ip msdp command
ip msdp sa-filter command
ip mtu command
IP multicast [See multicast routing]
ip multicast boundary command 2nd
ip multicast helper-map command
ip name-server command
ip nat inside command
 without overload keyword
ip nat translation command
IP Only Feature Set
ip ospf cost command
ip ospf neighbor command
ip ospf priority command
ip pim border command
ip pim bsr-candidate command
ip pim rp-address command
ip pim rp-candidate command
ip pim send-rp-announce command
ip pim send-rp-discovery command
ip pim sparse-dense-mode command
ip pim spt-threshold command
IP Precedence values
 combining with TOS Precedence values
IP prefixes
ip rip triggered command
ip route-cache command
ip route-cache policy command 2nd
IP routing
 based on application type
 based on source address
 policy-based
 application type
 examining
 source address
 restricting paths
 static routes
 floating
 tables [See routing tables]
ip rsvp bandwidth command
ip rsvp neighbor command 2nd
IP subnets, identifying
ip summary-address eigrp command
ip summary-address rip command
ip tacacs source-interface command
IPSec (Internet Protocol Security)
 modes of operation
 protocol, checking status
IPX
 traffic, tunneling
ipx routing command
IRDP (ICMP Router Discovery Protocol)
ISDN Service Profile Identifier (SPID)
isdn switch-type command
ISDN switches
 Australia
 France
 Germany
 Japan
 New Zealand
 North America
 Norway
ISDNs (Integrated Services Digital Networks)
 configuring PRI module
ISPs
 connecting with redundant routers
 creating good redundant connections with BGP
 setting up redundant

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

keepalive command 2nd 3rd
keystrokes, capturing

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

lease command (DHCP)
Line method (AAA)
Link Service Access Points (LSAP)
Link State database, limiting number of routes and entries
LMI configuration
LMI options (Frame Relay)
load balancing
 between eBGP or iBGP
 with HSRP
load-interval command
Local method (AAA)
local-case method (AAA)
local-dlci command
LOCAL_PREF attribute (BGP)
location command
log messages
 how Cisco routers handle
 sample
 suppressing
log-adjacency-changes command
logged in, seeing users
logger command (Unix)
logging
 access list usage
 analyzing ACL log entries
 automatically rotate and archive log files
 changing default facility
 clearing buffer
 enabling router 2nd
 enabling syslog on Unix server
 limiting levels
 preventing common messages from being logged
 rate-limiting syslog traffic
 sending messages to different files
 sending messages to screen
 setting IP source address
 setting log size
 severity levels
 system events
 TCP sessions
 testing syslog server configuration
 time stamping
 using remote log server
logging buffered command 2nd
logging facility command 2nd
logging rate-limit command
logging source-interface command
logging trap command 2nd
login command
logins
 authenticating IDs
 automating
logout-warning command

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

MAC addresses
 associating with IP addresses
 converting
 HSRP and
 reasons to change
mac-address command
managers (SNMP)
map-class command
mask formats
mask-cvt script
match address command
match command
match option (redistribute command)
max-entries command (NAT)
max-free keyword (public buffer pools)
MBGP
 exchanging multicast information
MED (Multiple Exit Discriminator)
media types
media-type command 2nd
member command
memory, flash [See flash memory]
messages
 banner [See banner messages]
 security warnings
 sending
metric-type keyword (redistribute static command)
MIBs (Management Information Bases)
 entries
 limiting access
min-free keyword (public buffer pools)
misttyped commands, router trying to resolve
mode command
modem inout command
mop\: option (boot system command)
Morris Worm
MOSPF (Multicast Open Shortest Path First) 2nd 3rd
MP_REACH_NLRI attribute (BGP)
MP_UNREACH_NLRI attribute (BGP)
mroute command
MSDP, discovering external sources
mstat command 2nd
 isolating multicast routing problems
mtu command 2nd
Multicast Open Shortest Path First [See MOSPF]
multicast routing
 controlling scope
 with scoped addressing
 with TTL
 converting from broadcasts
 debugging
 DVMRP [See DVMRP]
 exchanging information with MBGP
 low frequency
 MOSPF [See MOSPF]
 PIM-DM [See PIM-DM]
 PIM-SM [See PIM-SM]
 protocols
 types
 required network elements
 showing status
 static entries
multicast trees, tracing
multipath routing
multiple addresses with a single hostname
Multiple Exit Discriminator (MED) 2nd
multipoint subinterfaces
multiring command 2nd

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

named ACLs
NAT (Network Address Translation)
 adjusting timers
 checking status
 configuring
 debugging
 rewriting network prefix
 setting external addresses
 dynamically
 some statically, some dynamically
 statically
 translating internal and external addresses
neighbor command
 default-originate option
 route-map option
 shutdown keyword
neighbor password command
neighbor remote-as command
NET-SNMP
netstat.pl script
 sample output
network
 booting IOS image over
 convergence, improving
 stability
Network Address Translation [See NAT]
network command 2nd
 classless version
Network Time Protocol [See NTP]
NEWCONFIG file 2nd
Next Hop attribute (BGP) 2nd
next-hop-self command
no auto-summary command 2nd
no cdp enable command 2nd
no cdp run command
no discard-route command
no exec command
 async dial
no ip forward-protocol command
no ip forward-protocol udp command
no ip mroute-cache command
no logging event command
no logging event dlci-status-change command
no logging event link-status command
no logging event subif-link-status command
no partition command
no shutdown command
no-xauth option
noescape keyword
None method (AAA)
nrzi-encoding command
NTP (Network Time Protocol)
 authentication
 broadcast mode
 changing synchronization periods
 checking status
 configuring for redundancy
 configuring router as server
 controlling per interface
 debugging
 limiting number of peers
 multicast mode
 restricting peers
 setting clock period
 synchronizing time on all routers
ntp access-group command 2nd
ntp access-group serve-only command
ntp association command
ntp authentication command
ntp broadcast command
ntp broadcastdelay command 2nd
ntp clock-period command
ntp disable command 2nd
ntp max-associations command 2nd
ntp multicast command
ntp server command
ntp update-calendar command
NVRAM (Non-Volatile RAM)
 configuration files larger than

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

OAKLEY key determination protocol
OAM (ATM Operations Administration and Management)
offset-list command 2nd
OIDs (Object Identifiers)
Open Shortest Path First [See OSPF]
OpenSSH
option command
ORIGIN attribute (BGP)
OSPF (Open Shortest Path First)
 adjacency state changes
 adjusting timers
 authentication
 configuring
 convergence behavior, improving
 creating default route
 debugging
 disabling
 filtering routes
 link costs
 overview
 redistributing external routes
 route tagging
 Router ID (RID)
 static routes
 summarizing routes
 viewing status with domain names
output-delay command (RIP) 2nd

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

packets
 blocking [See filtering]
 controlling fragmentation
 delay sending
 dropping
 explorer
partition command
passive mode FTP sessions
passive-interface command 2nd
 disabling OSPF
password command
passwords
 authenticating
 encrypting
 stronger
 forgotten
 removing from configuration file
 setting up
payload scrambling on ATM circuit
peer groups (BGP)
 authenticating
Per-Hop Behavior (PHB)
Per-Hop Behaviors (PHB)
 implementing
Perfect Forward Secrecy (PFS)
performance limitations
Perl
Permanent Virtual Circuits [See PVC]
permissions [See access and privilege]
permit command
persist command
physical-layer async command
PIM (Protocol Independent Multicast)
PIM-DM (Protocol Independent MulticastÑDense Mode) 2nd
PIM-SM (Protocol Independent MulticastÑSparse Mode)
 Auto-RP and
 BSR and
point-to-point keyword
PORT command (FTP)
ports, setting privilege levels
power on self test (POST)
ppp multilink command
preempt delay command
PRI module (ISDN), configuring
pri-group command
primary-ni
Priority Queueing (PQ) 2nd
 with Custom Queueing
priority-list command
privilege [See access and privilege]
privilege level command
Process Switching
promiscuous keyword
Protocol Independent MulticastÑDense Mode [See PIM-DM]
Protocol Independent MulticastÑSparse Mode [See PIM-SM]
Proxy ARP
public buffer pools 2nd
Public Key Infrastructure (PKI)
PuTTY
PVCs (Permanent Virtual Circuits)
 assigned to separate sub-interfaces
 ATM link with
 sharing same interface
 sharing same subinterface
 traffic shaping using Frame Relay

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Quality of Service (QoS)
 tagging DLSw packets for
queue parameters
 viewing
queue-list command
queueing
 algorithms 2nd
 improving bandwidth scaling of
 congestion and
 custom [See Custom Queueing]
 priority [See Priority Queueing]

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Radius method (AAA)
RADIUS versus TACACS+
Random Early Detection (RED)
random-detect dscp command
rate-limit command 2nd
rcp\: option (boot system command)
recursive routing in tunnels
RED (Random Early Detection)
redeploying an old router
redistribute command
 match option
 tagging external routes
redistribute static command 2nd 3rd
 metric-type keyword
reflexive ACLs
reload at command
reload cancel command
reload in command 2nd
reloading
 automatically at specific time
 canceling
remote configuration boot process
remote monitoring [See RMON]
Remote Source Route Bridging (RSRB) bridging protocol
remote-peer command 2nd
remove-private-AS command
reports
 generating ARP table information
 generating IP
 generating IP routing
Request To Send (RTS) signal
Reservation Protocol (RSVP)
RESULT file
Reverse Path Forwarding (RPF)
 path
 trees
RIF (Routing Information Field)
ring-speed command
RIP 2nd [See also routes]
 authentication, enabling
 central feature of
 disabling interfaces
 filtering routes with
 redistributing static routes
 reduce bandwidth requirements
 route summarization
 unicast updates
 version 1, configuring
 Version 2, configuring
RMON
 events
 using to send traps
ROM, routerÕs
rom\: option (boot system command)
root bridge
Round Robin (RR) queueing algorithm
Round Trip Reporter (RTR)
round-robin circuit balancing
route maps
 redistributing routes into EIGRP using
route tagging 2nd
Route Trip Time Monitor (RTTMON)
route-map command lines
router-id command
routers
 automatically reload at specific time
 booting using remote configuration file
 buffers, tuning
 configuration [See configurations]
 creating static host lookup table
 disabling router lines
 extracting hardware list
 extracting information via SNMP
 filesystems used by CiscoÕs most common
 flash [See flash memory]
 improving efficiency
 interface connections
 disabling viewing
 interfaces [See interfaces, router]
 IOS image too large for local flash
 last initialized
 low-end
 lowspeed
 media types [See media types]
 packets, delay sending
 performance, timeout parameters
 remotely seeing who is logged into
 services, enabling and disabling
 system management issues
 trying to resolve mistyped commands
routes
 applying offsets
 creating default
 creating default in EIGRP
 filtering with EIGRP
 finding in routing tables
 redistributing into EIGRP
 using route maps
 redistributing static
 using route maps
 redistributing with BGP
routing [See also IP routing; RIP; routing tables]
 classless [See CIDR]
 tags
Routing Information Field [See RIF]
routing loops, preventing 2nd
routing protocol performance
routing tables
 decrease size
 finding an IP route
 finding particular types
 reducing size
 OSPF
 reducing size (BGP)
 summarizing (BGP)
RSA keys
 creating encrypted VPNs
RSVP, configuring
rt.pl script
rtr responder command
rtr schedule command
RTR-DATA.CSV file
rtr-template.txt file
RTR_LIST file
running-config
rxload

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

SAA (Service Assurance Agent)
same-interface keyword (Fast Switching)
SAP numbers (802.2)
saving router configuration to server
scoped addressing, multicast
scripting and aliases
SDLC
 changing full duplex to half duplex
 configuring for multidrop connections
 configuring for use with DLSw
 device
 checking status
 states
sdlc address command 2nd 3rd
sdlc dlsw command
sdlc hdx command
sdlc partner command 2nd
sdlc poll-pause-timer command
sdlc role command options
sdlc role primary command
sdlc slow-poll command
sdlc vmac command
sdlc xid command
security
 problems
 booting over the network
 related to CDP
 SNMP access lists
 warnings, displaying
send command
send-rp-announce command
serial connections
serial devices, connecting through IP network
server host table file
Service Access Points (SAP)
Service Assurance Agent (SAA)
service compress-config command 2nd
service config option
service finger command
service password-encryption command 2nd 3rd
service timestamp command 2nd
service-module command
set default interface command
set ip default next-hop command
set ip next-hop verify-availability command
set next-hop command
show access-list command 2nd 3rd
show alias command
show atm pvc command
show backup command
show buffer command
show buffers command
show cdp command
show cdp neighbors command
show cef drop command
show cef interface command
show cef not-cef-switched command 2nd
show clock detail command 2nd 3rd
show crypto engine command
show crypto isakmp policy command
show crypto isakmp sa command 2nd
show crypto key command
show crypto map command 2nd
show dialer command
show dlsw circuits command 2nd
show dlsw peers command
show flash\: command 2nd
show frame-relay lmi command
show frame-relay map command
show frame-relay pvc command 2nd 3rd
show frame-relay route command
show hosts command 2nd 3rd
show interface command
show interfaces command
 stats keyword
 switching keyword
show ip arp command
show ip bgp command
show ip cef command
show ip cef detail command
show ip dhcp binding command 2nd 3rd
show ip dhcp database command
show ip dhcp EXEC command
show ip eigrp neighbors command 2nd
show ip eigrp toplogy command
show ip igmp command
show ip inspect sessions command
show ip interface command
show ip mroute command 2nd
show ip msdp command
show ip nat statistics command
show ip ospf interface command 2nd
show ip pim interface command
show ip policy command
show ip rip database command 2nd 3rd
show ip route command 2nd
show ip route summary command
show ip rpf command 2nd
show ip rsvp installed command
show ip rsvp interface command
show ip rsvp neighbor command
show ip ssh command
show isdn active command
show isdn command
show isdn history command 2nd
show isdn status command 2nd
show key chain command
show line command
show lines command
show logging command 2nd 3rd
show logging exec command
show memory command
show queue command 2nd
show queueing command
show reload command
show route-map command
show running-config command 2nd 3rd 4th
show slot0\: command
show slot1\: command
show snmp group command 2nd 3rd
show snmp group EXEC command
show standby brief command
show standby command 2nd
show startup-config command
show users command 2nd 3rd
show version command 2nd 3rd
show vlans command 2nd
shutdown command 2nd
Simple Network Management Protocol [See SNMP]
Simple Network Time Protocol (SNTP)
Skipjack
slot0\: option (boot system command)
slot1\: option (boot system command)
smds keyword
SNA priorities, supporting
SNMP (Simple Network Management Protocol)
 access lists
 configuring
 disabling link up/down traps
 enabling version 3
 extracting inventory information
 extracting router information
 limiting MIB access
 logging unauthorized attempts
 making interface table numbers permanent
 management model
 mass configuration changes
 MIB entries
 MIBs
 modifying router configuration
 OIDs
 preventing unauthorized configuration changes
 recording information for SNMP access
 remotely upgrading routerÕs IOS
 setting IP source address for traps
 setting packet size
 setting queue size
 setting timeout values
 trap types
 traps and Informs
 sending syslog messages as
 traps, forcing same IP source address
 using RMON to send traps
snmp community command
snmp ifindex persist command
SNMP utilities
snmp-server enable informs command
snmp-server group command 2nd 3rd
snmp-server host command 2nd
snmp-server queue-length command
snmp-server tftp-server-list command
snmp-server trap-source command
snmp-server user command
snmpget utility 2nd 3rd
snmpset command
snmpwalk utility
SNTP (Simple Network Time Protocol)
Source Route Bridge
Source Route Transparent (SRT) bridging protocol
source-bridge command
source-bridge spanning command
spanning tree explorers
Spanning Tree Protocol (STP)
sparse mode 2nd 3rd
squeeze command
 alternatives to
SSH
 preventing timeouts
 using for secure access
standby mac-address command
standby mac-refresh command
standby preempt command 2nd 3rd
standby priority command
 preempt keyword
standby timers command
standby track command
startup configuration file
startup configuration, clearing
startup-config file 2nd
static host lookup table, creating on router
static IP addresses
static routes
 floating
statistics keyword (show ip dhcp)
storage, seeing how much router has
stub routing, EIGRP
STUN (Serial Tunnel)
SVCs (Switched Virtual Circuits)
 configuring in Frame Relay
switched 56Kbps digital service
Switched Multi-megabit Data Service (SMDS) protocol
Switched Virtual Circuits [See SVC]
sync/async interface, configuring
synchronization
 disabling
synchronous serial encapsulation types
syslog messages
 setting IP source address
syslog server configuration, testing
syslog.pid file, locating
system events, logging
system feature (AAA)

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

T1, configuring internal CSU/DSU for WAN connection
TAC Access Control System
tacacs+ method (AAA)
tacacs-server attempts command
tacacs-server command
tacacs-server host commands
TACACS/TACACS+
 authentication, disabling
 encryption and
 messages, setting IP source address
 server
 configuration file example
 losing access to
 server software, obtaining
 using for AAA authentication
 versus RADIUS
tag keyword (redistribute command)
TCP
 header flags, filtering by
 sessions
 filtering
 logging
 small servers
Telnet [See also VTYs]
 changing number of users who can
 logging sessions
 preventing timeouts
 restricting inbound access
 setting IP source address
telnet command
Terminal Access Controller (TAC)
Terminal Access Controller Access Control System [See TACACS/TACACS+]
terminal monitor command 2nd 3rd
Tethereal
TFTP (Trivial File Transfer Protocol)
 directory access levels
 preventing unauthorized configuration changes
 server, configuring router to be
tftp-server command
tftp-server-list command
tftp\: option (boot system command)
threshold command
time [See also NTP]
 Daylight Saving Time, adjusting router to
 setting on router
 setting router to automatically reload
 synchronizing on all routers
time stamping router logs
time zone
 setting on router
timekeeping on a router
timers basic command
timers, adjusting
Token Ring
 bridging between Ethernet and
 full-duplex support
 interface features
 to Ethernet bridging
TOS
 bytes
 DSCP formalism
 difference between Assured Forwarding models and
 fields
 setting
 when forwarding packets
 filtering by
 values
 combining with IP Precedence values
TOS-based routing
touch command
traceroute program
traffic
 controlling with Committed Access Rate
 shaping
 difference between CAR and
 using Frame Relay
traffic-shape adaptive command
Transparent Bridging
transport input all command
transport input command
transport input none command
triggered updates
triggered updates (RIP)
Triple DES
Trivial File Transfer Protocol [See TFTP]
Truncated Reverse Path Broadcasting (TRPB)
trunks [See VLAN trunks]
TTL, controlling multicast scope
ttl-threshold command
tunnel destination command
tunnel modes
TUNNELMAP
tunnels
 checking status
 creating
 foreign protocols
 passing dynamic routing protocols through
txload
type command
Type of Service (TOS) field
 setting for QoS
Typical Mean Time Between Failure (MTBF) estimates for Cisco routers

This document is created with the unregistered version of CHM2PDF Pilot

Top

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UDP servers
uncompress command
undebug all command
undelete command
unicast updates
use-bia command 2nd
user access [See access and privelege]
user IDs and passwords, setting up
username command 2nd 3rd
 autocommand keyword
users
 displaying active
 setting privilege levels

Top

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

vbr-nrt command
verify command
version 2 command
virtual circuits [See PVCs SVCs]
Virtual Private Networks (VPNs)
Virtual Router Redundancy Protocol (VRRP)
virtual terminal (VTY) ports [See VTYs]
VLAN trunks
 connecting with 802.1q
 connecting with ISL
VPNs (Virtual Private Networks)
 checking status
 creating between workstation and router
 creating encrypted
 ecrypted
 using RSA keys
VTYs (virtual terminal ports)
 changing number
 changing timeouts
 enabling absolute timeouts
 reserving port for administrative use
 restricting access by protocol
 supported protocols

Top

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

WAN connections
 configuring internal CSU/DSU
web site, CiscoÕs
Weighted Fair Queueing (WFQ)
 Class-Based
Weighted Random Early Detection [See WRED]
WFQ (Weighted Fair Queueing) 2nd
who command
world writeable IOS images
WRED (Weighted Random Early Detection)
 controlling congestion with
 flow-based
write core command

Top

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

xmodem and ymodem file transfers
XTACACS (Extended TACACS)

Top

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zcat command

Top

This document is created with the unregistered version of CHM2PDF Pilot

	COVER
	TOC
	Copyright
	Preface
	Organization
	What's in This Book
	Conventions
	Comments and Questions
	Acknowledgments

	Chapter 1. Router Configuration and File Management
	Introduction
	Recipe 1.1. Configuring the Router via TFTP
	Recipe 1.2. Saving Router Configuration to Server
	Recipe 1.3. Booting the Router Using a Remote Configuration File
	Recipe 1.4. Storing Configuration Files Larger than NVRAM
	Recipe 1.5. Clearing the Startup Configuration
	Recipe 1.6. Loading a New IOS Image
	Recipe 1.7. Booting a Different IOS Image
	Recipe 1.8. Booting Over the Network
	Recipe 1.9. Copying an IOS Image to a Server
	Recipe 1.10. Copying an IOS Image Through the Console
	Recipe 1.11. Deleting Files from Flash
	Recipe 1.12. Partitioning Flash
	Recipe 1.13. Using the Router as a TFTP Server
	Recipe 1.14. Using FTP from the Router
	Recipe 1.15. Generating Large Numbers of Router Configurations
	Recipe 1.16. Changing the Configurations of Many Routers at Once
	Recipe 1.17. Extracting Hardware Inventory Information
	Recipe 1.18. Backing Up Router Configurations

	Chapter 2. Router Management
	Introduction
	Recipe 2.1. Creating Command Aliases
	Recipe 2.2. Managing the Router's ARP Cache
	Recipe 2.3. Tuning Router Buffers
	Recipe 2.4. Using the Cisco Discovery Protocol
	Recipe 2.5. Disabling the Cisco Discovery Protocol
	Recipe 2.6. Using the Small Servers
	Recipe 2.7. Enabling HTTP Access to a Router
	Recipe 2.8. Using Static Hostname Tables
	Recipe 2.8. Using Static Hostname Tables
	Recipe 2.8. Using Static Hostname Tables
	Recipe 2.11. Specifying a Router Reload Time
	Recipe 2.12. Creating Exception Dump Files
	Recipe 2.13. Generating a Report of Interface Information
	Recipe 2.14. Generating a Report of Routing Table Information
	Recipe 2.15. Generating a Report of ARP Table Information
	Recipe 2.16. Generating a Server Host Table File

	Chapter 3. User Access and Privilege Levels
	Introduction
	Recipe 3.1. Setting Up User IDs
	Recipe 3.2. Encrypting Passwords
	Recipe 3.3. Using Better Encryption Techniques
	Recipe 3.4. Removing Passwords from a Router Configuration File
	Recipe 3.5. Deciphering Cisco's Weak Password Encryption
	Recipe 3.6. Displaying Active Users
	Recipe 3.7. Sending Messages to Other Users
	Recipe 3.8. Changing the Number of VTYs
	Recipe 3.9. Changing VTY Timeouts
	Recipe 3.10. Restricting VTY Access by Protocol
	Recipe 3.11. Enabling Absolute Timeouts on VTY Lines
	Recipe 3.12. Implementing Banners
	Recipe 3.13. Disabling Banners on a Port
	Recipe 3.14. Disabling Router Lines
	Recipe 3.15. Reserving a VTY Port for Administrative Access
	Recipe 3.16. Restricting Inbound Telnet Access
	Recipe 3.17. Logging Telnet Access
	Recipe 3.18. Setting the Source Address for Telnet
	Recipe 3.19. Automating the Login Sequence
	Recipe 3.20. Using SSH for Secure Access
	Recipe 3.21. Changing the Privilege Level of IOS Commands
	Recipe 3.22. Defining Per-User Privileges
	Recipe 3.23. Defining Per-Port Privileges

	Chapter 4. TACACS+
	Introduction
	Recipe 4.1. Authenticating Login IDs from a Central System
	Recipe 4.2. Restricting Command Access
	Recipe 4.3. Losing Access to the TACACS+ Server
	Recipe 4.4. Disabling TACACS+ Authentication on a Particular Line
	Recipe 4.5. Capturing User Keystrokes
	Recipe 4.6. Logging System Events
	Recipe 4.7. Setting the IP Source Address for TACACS+ Messages
	Recipe 4.8. Obtaining Free TACACS+ Server Software
	Recipe 4.9. Sample Server Configuration Files

	Chapter 5. IP Routing
	Introduction
	Recipe 5.1. Finding an IP Route
	Recipe 5.2. Finding Types of IP Routes
	Recipe 5.3. Converting Different Mask Formats
	Recipe 5.4. Using Static Routing
	Recipe 5.5. Floating Static Routes
	Recipe 5.6. Using Policy-Based Routing to Route Based on Source Address
	Recipe 5.7. Using Policy-Based Routing to Route Based on Application Type
	Recipe 5.8. Examining Policy-Based Routing
	Recipe 5.9. Changing Administrative Distances
	Recipe 5.10. Routing Over Multiple Paths with Equal Costs

	Chapter 6. RIP
	Introduction
	Recipe 6.1. Configuring RIP Version 1
	Recipe 6.2. Filtering Routes with RIP
	Recipe 6.3. Redistributing Static Routes into RIP
	Recipe 6.4. Redistributing Routes Using Route Maps
	Recipe 6.5. Creating a Default Route in RIP
	Recipe 6.6. Disabling RIP on an Interface
	Recipe 6.7. Unicast Updates for RIP
	Recipe 6.8. Applying Offsets to Routes
	Recipe 6.9. Adjusting Timers
	Recipe 6.10. Configuring Interpacket Delay
	Recipe 6.11. Enabling Triggered Updates
	Recipe 6.12. Increasing the RIP Input Queue
	Recipe 6.13. Configuring RIP Version 2
	Recipe 6.14. Enabling RIP Authentication
	Recipe 6.15. RIP Route Summarization
	Recipe 6.16. Route Tagging

	Chapter 7. EIGRP
	Introduction
	Recipe 7.1. Configuring EIGRP
	Recipe 7.2. Filtering Routes with EIGRP
	Recipe 7.3. Redistributing Routes into EIGRP
	Recipe 7.4. Redistributing Routes into EIGRP Using Route Maps
	Recipe 7.5. Creating a Default Route in EIGRP
	Recipe 7.6. Disabling EIGRP on an Interface
	Recipe 7.7. EIGRP Route Summarization
	Recipe 7.8. Adjusting EIGRP Metrics
	Recipe 7.9. Adjusting Timers
	Recipe 7.10. Enabling EIGRP Authentication
	Recipe 7.11. Logging EIGRP Neighbor State Changes
	Recipe 7.12. Limiting EIGRP's Bandwidth Utilization
	Recipe 7.13. EIGRP Stub Routing
	Recipe 7.14. Route Tagging
	Recipe 7.15. Viewing EIGRP Status

	Chapter 8. OSPF
	Introduction
	Recipe 8.1. Configuring OSPF
	Recipe 8.2. Filtering Routes in OSPF
	Recipe 8.3. Adjusting OSPF Costs
	Recipe 8.4. Creating a Default Route in OSPF
	Recipe 8.5. Redistributing Static Routes into OSPF
	Recipe 8.6. Redistributing External Routes into OSPF
	Recipe 8.7. Manipulating DR Selection
	Recipe 8.8. Setting the OSPF RID
	Recipe 8.9. Enabling OSPF Authentication
	Recipe 8.10. Selecting the Appropriate Area Types
	Recipe 8.11. Summarizing Routes in OSPF
	Recipe 8.12. Disabling OSPF on Certain Interfaces
	Recipe 8.13. OSPF Route Tagging
	Recipe 8.14. Logging OSPF Adjacency Changes
	Recipe 8.15. Adjusting OSPF Timers
	Recipe 8.15. Adjusting OSPF Timers
	Recipe 8.17. Debugging OSPF

	Chapter 9. BGP
	Introduction
	Recipe 9.1. Configuring BGP
	Recipe 9.2. Using eBGP Multihop
	Recipe 9.3. Adjusting the Next-Hop Attribute
	Recipe 9.4. Connecting to Two ISPs
	Recipe 9.5. Connecting to Two ISPs with Redundant Routers
	Recipe 9.6. Restricting Networks Advertised to a BGP Peer
	Recipe 9.7. Adjusting Local Preference Values
	Recipe 9.8. Load Balancing
	Recipe 9.9. Removing Private ASNs from the AS Path
	Recipe 9.10. Filtering BGP Routes Based on AS Paths
	Recipe 9.11. Reducing the Size of the Received Routing Table
	Recipe 9.12. Summarizing Outbound Routing Information
	Recipe 9.13. Prepending ASNs to the AS Path
	Recipe 9.14. Redistributing Routes with BGP
	Recipe 9.15. Using Peer Groups
	Recipe 9.16. Authenticating BGP Peers
	Recipe 9.17. Putting It All Together

	Chapter 10. Frame Relay
	Introduction
	Recipe 10.1. Setting Up Frame Relay withPoint-to-Point Subinterfaces
	Recipe 10.2. Adjusting LMI Options
	Recipe 10.3. Setting Up Frame Relay with Map Statements
	Recipe 10.4. Using Multipoint Subinterfaces
	Recipe 10.5. Configuring Frame Relay SVCs
	Recipe 10.6. Simulating a Frame Relay Cloud
	Recipe 10.7. Compressing Frame Relay Data on a Subinterface
	Recipe 10.8. Compressing Frame Relay Data with Maps
	Recipe 10.9. Viewing Frame Relay Status Information

	Chapter 11. Queueing and Congestion
	Introduction
	Recipe 11.1. Fast Switching and CEF
	Recipe 11.2. Setting the DSCP or TOS Field
	Recipe 11.3. Using Priority Queueing
	Recipe 11.4. Using Custom Queueing
	Recipe 11.5. Using Custom Queues with Priority Queues
	Recipe 11.6. Using Weighted Fair Queueing
	Recipe 11.7. Using Class-Based Weighted Fair Queueing
	Recipe 11.8. Controlling Congestion with WRED
	Recipe 11.9. Using RSVP
	Recipe 11.10. Using Generic Traffic Shaping
	Recipe 11.11. Using Frame-Relay Traffic Shaping
	Recipe 11.12. Using Committed Access Rate
	Recipe 11.13. Implementing Standards-BasedPer-Hop Behavior
	Recipe 11.14. Viewing Queue Parameters

	Chapter 12. Tunnels and VPNs
	Introduction
	Recipe 12.1. Creating a Tunnel
	Recipe 12.2. Tunneling Foreign Protocols in IP
	Recipe 12.3. Tunneling with Dynamic Routing Protocols
	Recipe 12.4. Viewing Tunnel Status
	Recipe 12.5. Creating an EncryptedRouter-to-Router VPN
	Recipe 12.6. Generating RSA Keys
	Recipe 12.7. Creating a Router-to-Router VPN with RSA Keys
	Recipe 12.8. Creating a VPN Between a Workstation and a Router
	Recipe 12.9. Check IPSec Protocol Status

	Chapter 13. Dial Backup
	Introduction
	Recipe 13.1. Automating Dial Backup
	Recipe 13.2. Using Dialer Interfaces
	Recipe 13.3. Using an Async Modem on the AUX Port
	Recipe 13.4. Using Backup Interfaces
	Recipe 13.5. Using Dialer Watch
	Recipe 13.6. Ensuring Proper Disconnection
	Recipe 13.7. View Dial Backup Status
	Recipe 13.8. Debugging Dial Backup

	Chapter 14. NTP and Time
	Introduction
	Recipe 14.1. Timestamping Router Logs
	Recipe 14.2. Setting the Time
	Recipe 14.3. Setting the Time Zone
	Recipe 14.4. Adjusting for Daylight Saving Time
	Recipe 14.5. Synchronizing the Time on All Routers (NTP)
	Recipe 14.6. Configuring NTP Redundancy
	Recipe 14.7. Setting the Router as the NTP Master for the Network
	Recipe 14.8. Changing NTP Synchronization Periods
	Recipe 14.9. Using NTP to Send Periodic Broadcast Time Updates
	Recipe 14.10. Using NTP to Send Periodic Multicast Time Updates
	Recipe 14.11. Enabling and Disabling NTP Per Interface
	Recipe 14.12. NTP Authentication
	Recipe 14.13. Limiting the Number of Peers
	Recipe 14.14. Restricting Peers
	Recipe 14.15. Setting the Clock Period
	Recipe 14.16. Checking the NTP Status
	Recipe 14.17. Debugging NTP

	Chapter 15. DLSw
	Introduction
	Recipe 15.1. Configuring DLSw
	Recipe 15.2. Using DLSw to Bridge Between Ethernet and Token Ring
	Recipe 15.3. Converting Ethernet and Token Ring MAC Addresses
	Recipe 15.4. Configuring SDLC
	Recipe 15.5. Configuring SDLC for Multidrop Connections
	Recipe 15.6. Using STUN
	Recipe 15.7. Using BSTUN
	Recipe 15.8. Controlling DLSw Packet Fragmentation
	Recipe 15.9. Tagging DLSw Packets for QoS
	Recipe 15.10. Supporting SNA Priorities
	Recipe 15.11. DLSw+ Redundancy and Fault Tolerance
	Recipe 15.12. Viewing DLSw Status Information
	Recipe 15.13. Viewing SDLC Status Information
	Recipe 15.14. Debugging DSLw

	Chapter 16. Router Interfaces and Media
	Introduction
	Recipe 16.1. Viewing Interface Status
	Recipe 16.2. Configuring Serial Interfaces
	Recipe 16.3. Using an Internal T1 CSU/DSU
	Recipe 16.4. Using an Internal ISDN PRI Module
	Recipe 16.5. Using an Internal 56Kbps CSU/DSU
	Recipe 16.6. Configuring an Async Serial Interface
	Recipe 16.7. Configuring ATM Subinterfaces
	Recipe 16.8. Setting Payload Scrambling on an ATM Circuit
	Recipe 16.9. Configuring Ethernet Interface Features
	Recipe 16.10. Configuring Token Ring Interface Features
	Recipe 16.11. Connecting VLAN Trunks With ISL
	Recipe 16.12. Connecting VLAN Trunks with 802.1Q

	Chapter 17. Simple Network Management Protocol
	Introduction
	Recipe 17.1. Configuring SNMP
	Recipe 17.2. Extracting Router Information via SNMP Tools
	Recipe 17.3. Recording Important Router Information for SNMP Access
	Recipe 17.4. Extracting Inventory Information from a List of Routers with SNMP
	Recipe 17.5. Using Access Lists to Protect SNMP Access
	Recipe 17.6. Logging Unauthorized SNMP Attempts
	Recipe 17.7. Limiting MIB Access
	Recipe 17.8. Using SNMP to Modify a Router's Running Configuration
	Recipe 17.9. Using SNMP to Copy a New IOS Image
	Recipe 17.10. Using SNMP to Perform Mass Configuration Changes
	Recipe 17.11. Preventing Unauthorized Configuration Modifications
	Recipe 17.12. Making Interface Table Numbers Permanent
	Recipe 17.13. Enabling SNMP Traps and Informs
	Recipe 17.14. Sending syslog Messages as SNMP Traps and Informs
	Recipe 17.15. Setting SNMP Packet Size
	Recipe 17.16. Setting SNMP Queue Size
	Recipe 17.17. Setting SNMP Timeout Values
	Recipe 17.18. Disabling Link Up/Down Traps per Interface
	Recipe 17.19. Setting the IP Source Address for SNMP Traps
	Recipe 17.20. Using RMON to Send Traps
	Recipe 17.21. Enabling SNMPv3
	Recipe 17.22. Using SAA

	Chapter 18. Logging
	Introduction
	Recipe 18.1. Enabling Local Router Logging
	Recipe 18.2. Setting the Log Size
	Recipe 18.3. Clearing the Router's Log
	Recipe 18.4. Sending Log Messages to Your Screen
	Recipe 18.5. Using a Remote Log Server
	Recipe 18.6. Enabling Syslog on a Unix Server
	Recipe 18.7. Changing the Default Log Facility
	Recipe 18.8. Restricting What Log Messages Are Sent to the Server
	Recipe 18.9. Setting the IP Source Address for Syslog Messages
	Recipe 18.10. Logging Router Syslog Messages in Different Files
	Recipe 18.11. Maintaining Syslog Files on the Server
	Recipe 18.12. Testing the Syslog Sever Configuration
	Recipe 18.13. Preventing the Most Common Messages from Being Logged
	Recipe 18.14. Rate-Limiting Syslog Traffic

	Chapter 19. Access Lists
	Introduction
	Recipe 19.1. Filtering by Source or Destination IP Address
	Recipe 19.2. Adding a Comment to an ACL
	Recipe 19.3. Filtering by Application
	Recipe 19.4. Filtering Based on TCP Header Flags
	Recipe 19.5. Restricting TCP Session Direction
	Recipe 19.6. Filtering Multiport Applications
	Recipe 19.7. Filtering Based on DSCP and TOS
	Recipe 19.8. Logging when an Access List Is Used
	Recipe 19.9. Logging TCP Sessions
	Recipe 19.10. Analyzing ACL Log Entries
	Recipe 19.10. Analyzing ACL Log Entries
	Recipe 19.12. Dealing with Passive Mode FTP
	Recipe 19.13. Using Context-Based Access Lists

	Chapter 20. DHCP
	Introduction
	Recipe 20.1. Using IP Helper Addresses for DHCP
	Recipe 20.2. Limiting the Impact of IP Helper Addresses
	Recipe 20.3. Using DHCP to Dynamically Configure Router IP Addresses
	Recipe 20.4. Dynamically Allocating Client IP Addresses via DHCP
	Recipe 20.5. Defining DHCP Configuration Options
	Recipe 20.6. Defining DHCP Lease Periods
	Recipe 20.7. Allocating Static IP Addresses with DHCP
	Recipe 20.8. Configuring a DHCP Database Client
	Recipe 20.9. Configuring Multiple DHCP Servers per Subnet
	Recipe 20.10. Showing DHCP Status
	Recipe 20.11. Debugging DHCP

	Chapter 21. NAT
	Introduction
	Recipe 21.1. Configuring Basic NAT Functionality
	Recipe 21.2. Allocating External Addresses Dynamically
	Recipe 21.3. Allocating External Addresses Statically
	Recipe 21.4. Translating Some Addresses Statically and Others Dynamically
	Recipe 21.5. Translating in Both Directions Simultaneously
	Recipe 21.6. Rewriting the Network Prefix
	Recipe 21.7. Adjusting NAT Timers
	Recipe 21.8. Changing TCP Ports for FTP
	Recipe 21.9. Checking NAT Status
	Recipe 21.10. Debugging NAT

	Chapter 22. Hot Standby Router Protocol
	Introduction
	Recipe 22.1. Configuring Basic HSRP Functionality
	Recipe 22.2. Using HSRP Preempt
	Recipe 22.3. Making HSRP React to Problems on Other Interfaces
	Recipe 22.4. Load Balancing with HSRP
	Recipe 22.5. Redirecting ICMP with HSRP
	Recipe 22.6. Manipulating HSRP Timers
	Recipe 22.7. Using HSRP on a Token Ring Network
	Recipe 22.8. HSRP SNMP Support
	Recipe 22.9. Increasing HSRP Security
	Recipe 22.10. Showing HSRP State Information
	Recipe 22.11. Debugging HSRP

	Chapter 23. IP Multicast
	Introduction
	Recipe 23.1. Configuring Basic Multicast Functionality with PIM-DM
	Recipe 23.2. Routing Multicast Traffic with PIMSM and BSR
	Recipe 23.3. Routing Multicast Traffic with PIM-SM and Auto-RP
	Recipe 23.4. Configuring Routing for a Low Frequency Multicast Application
	Recipe 23.5. Configuring CGMP
	Recipe 23.6. Static Multicast Routes and Group Memberships
	Recipe 23.7. Routing Multicast Traffic with MOSPF
	Recipe 23.8. Routing Multicast Traffic with DVMRP
	Recipe 23.9. DVMRP Tunnels
	Recipe 23.10. Controlling Multicast Scope with TTL
	Recipe 23.11. Using Administratively Scoped Addressing
	Recipe 23.12. Exchanging Multicast Routing Information with MBGP
	Recipe 23.13. Using MSDP to Discover External Sources
	Recipe 23.14. Converting Broadcasts to Multicasts
	Recipe 23.15. Showing Multicast Status
	Recipe 23.16. Debugging Multicast Routing

	Appendix A. External Software Packages
	Section A.1. Perl
	Section A.2. Expect
	Section A.3. NET-SNMP
	Section A.4. PuTTY
	Section A.5. OpenSSH
	Section A.6. Ethereal

	Appendix B. IP Precedence, TOS, and DSCP Classifications
	Section B.1. Combining TOS and IP Precedence to Mimic DSCP
	Section B.2. RSVP
	Section B.3. Queueing Algorithms
	Section B.4. Dropping Packets and Congestion Avoidance

	COLOPHON
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

